- Volume 143, Issue 10, 1997
Volume 143, Issue 10, 1997
- Pathogenicity And Medical Microbiology
-
-
-
Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cerous
More LessThe cytotoxicity of the two different enterotoxin complexes of Bacillus cereus was compared after isolation from three different strains. Protein components of non-haemolytic enterotoxin (NHE) of 39 kDa, 45 kDa and 105 kDa were isolated from all of the three strains, whilst proteins B, L1 and L2 of haemolysin BL (HBL) were isolated from supernatants of two strains (F837-76 and 1230-88). These proteins were not detected in strain 0075-95. Inhibition of protein synthesis in Vero cells was used as a measure of cytotoxicity. The HBL complex from strain F837-76 was highly toxic. This strain also produced the NHE complex. However, when purified, at least two of the components of NHE had to be present in higher amounts than those of the components of HBL to cause the same degree of toxicity. Both complexes purified from strain 1230-88 were cytotoxic. The amount required to cause the same degree of cytotoxicity was approximately equal for the components of the two complexes, except that higher amounts of the 105 kDa protein of NHE had to be present than for the other components. None of the purified complexes from strain 1230-88 was toxic in amounts comparable to those of the HBL complex of strain F837-76 and NHE of strain 0075-95. These results indicate that when measuring cytotoxic enterotoxins from B. cereus at least two different complexes and six different proteins have to be taken into consideration.
-
-
-
-
Production of putative virulence factors by Renibacterium salmoninarum grown in cell culture
More LessA cell culture system, employing the fish cell line Epithelioma papillosum cyprini (EPC), was developed to study the synthesis of intracellular antigen and the expression of putative virulence factors by Renibacterium salmoninarum. EPC cultures infected with R. salmoninarum could be maintained for 7 weeks, during which the pathogen multiplied intracellularly. Immunohistochemical examination of infected cultures revealed the production of the p57 antigen, haemolysin and cytolysin. The intracellular nature of the infection was confirmed by transmission electron microscopic examination of EPC monolayers. A comparison of the relative virulence of bacterial cells cultured in EPC cells and on agar plates revealed that the former were markedly more virulent in challenge experiments with juvenile rainbow trout (Oncorhynchus mykiss Walbaum). The EPC cell culture model provided a system for the study of R. salmoninarum under more natural conditions than those achieved with plate culture techniques.
-
-
-
Evidence for Serpulina hyodysenteriae being recombinant, with an epidemic population structure
More LessThe population structure of Serpulina hyodysenteriae was investigated using multilocus enzyme electrophoresis. A total of 231 isolates were divided into 50 electrophoretic types (ETs), with a mean genetic diversity of 0·29 for the number of ETs and 0·23 for the number of isolates. Subsets of isolates from two Australian states (71 isolates from Victoria and 68 isolates from Queensland) exhibited as much genetic variation as the entire collection. The calculated index of association (I A) for the number of ETs (0·29±0·17) was not significantly different from zero, and hence provided evidence for the occurrence of significant genetic recombination accounting for the observed variation between strains. In contrast, the I A for the number of isolates (3·93.0·03) was significantly different from zero, with seven of the 50 ETs (ETs 4, 6, 13, 14, 20, 33 and 35) containing 51% of all the isolates. Even when multiple isolates from the same farm were removed from the analysis, the I A value for the number of isolates remained significantly greater than zero (I A 9·87±0·04), indicating that it was not biased by their inclusion. The results suggest that S. hyodysenteriae has an epidemic population structure.
-
- Physiology And Growth
-
-
-
Transcriptional control of several aerobically induced cytochrome structural genes in Rhodobacter sphaeroides
More LessTo decipher how the synthesis of energy-transducing enzymes responds to environmental cues, the response of three Rhodobacter sphaeroides aerobic cytochrome gene promoters was analysed under different conditions. Two of these promoters are upstream of structural genes (ctaD and coxII) for individual subunits of the cytochrome aa 3 respiratory complex. The third promoter is that for the cycFG operon, which encodes two c-type cytochromes of unknown function, cytochrome c 554 and CycG. Primer extension analysis identified a single oxygen-responsive transcription start site for each gene. Utilizing operon fusions to Escherichia coli lacZ as a measure of promoter activity, transcription from the ctaD, coxII and cycFG promoters was approximately twofold higher when cells were grown at high (30%) oxygen tensions than under low (2%) oxygen or anaerobic (photosynthetic) conditions. Analysis of promoter function using specific host mutations indicated that loss of the R. sphaeroides FNR homologue, FnrL, causes a small, but reproducible, increase in cycFG and coxII transcription when cells are grown at 2% oxygen. However, neither the ΔFnrL mutation nor alterations in sequences related to a consensus target site for the E. coli FNR protein increased function of any of these three promoters to that seen under aerobic conditions in wild-type cells. From this we conclude that FnrL is not solely responsible for reduced transcription of these three aerobic cytochrome genes under low oxygen or anaerobic conditions. When activity of these three promoters was monitored after cells were shifted from anaerobic (photosynthetic) conditions to a 30% oxygen atmosphere, it took several cell doublings for LacZ levels to increase to those found in steady-state 30% oxygen cultures. From these results, it appears that activity of these promoters is also regulated by a stable molecule whose synthesis or function responds slowly to the presence of high oxygen tensions.
-
-
-
-
Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ)
More LessMany bacteria can synthesize the cofactor pyrroloquinoline quinone (PQQ), a cofactor of several dehydrogenases, including glucose dehydrogenase (GCD). Among the enteric bacteria, Klebsiella pneumoniae has been shown to contain the genes required for PQQ biosynthesis. Escherichia coli and Salmonella typhimurium were thought to be unable to synthesize PQQ but it has been reported that strain EF260, a derivative of E. coli FB8, can synthesize PQQ after mutation and can oxidize glucose to gluconate via the GCD/PQQ pathway (F. Biville, E. Turlin & F. Gasser, 1991, J Gen Microbiol 137, 1775-1782). We have reinvestigated this claim and conclude that it is most likely erroneous. (i) Strain EF260, isolated originally by Biville and coworkers, was unable to synthesize a holo-enzyme GCD unless PQQ was supplied to the growth medium. No GCD activity could be detected in membrane fractions. (ii) The amount of PQQ detected in the growth medium of EF260 was very low and not very different from that found in a medium with its parent strain or in a medium containing no cells. (iii) EF260 cells were unable to produce gluconate from glucose via the PQQ/GCD pathway. (iv) Introduction of a gcd::Cm deletion in EF260, eliminating GCD, did not affect glucose metabolism. This suggested a pathway for glucose metabolism other than the PQQ/GCD pathway, (v) Glucose uptake and metabolism in EF260 involved a low-affinity transport system of unknown identity, followed most likely by phosphorylation via glucokinase. It is concluded that E. coli cannot synthesize PQQ and that it lacks genes required for PQQ biosynthesis.
-
-
-
A novel 1,3-β-glucan synthase from the oomycete Saprolegnia monoica
An apparently novel 1,3-β-glucan synthase from the oomycete Saprolegnia monoica has been characterized. The enzyme exhibits properties that differ markedly from those of the enzyme previously described [Fèvre, M. & Dumas, C. (1977). J Gen Microbiol 103, 297-306] as it is active at alkaline pH, stimulated by the divalent cations Ca2+, Mg2+ and Mn2+, and appears to be located mainly in the apical part of the hypha. Taking into consideration the differences in pH optimum and effect of divalent ions, each enzyme activity could be assayed in the presence of the other. The insoluble polymeric product of the enzyme with alkaline pH optimum was characterized as a linear 1,3-β-glucan. Comparisons of the general properties of 1,3-β-glucan synthases suggest that enzymes from the oomycetes are more closely related to enzymes from higher plants than to those of true fungi, reflecting the fact that the oomycetes are highly divergent from chitinous fungi.
-
-
-
Polyethyleneimine is an effective permeabilizer of Gram-negative bacteria
More LessThe effect of the polycation polyethyleneimine (PEI) on the permeability properties of the Gram-negative bacterial outer membrane was investigated using Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium as target organisms. At concentrations of less than 20 µg ml−1, PEI increased the bacterial uptake of 1-N-phenylnaphthylamine, which is a hydrophobic probe whose quantum yield is greatly increased in a lipid environment, indicating increased hydrophobic permeation of the outer membrane by PEI. The effect of PEI was comparable to that brought about by the well-known permeabilizer EDTA. Permeabilization by PEI was retarded but not completely inhibited by millimolar concentrations of MgCl2. PEI also increased the susceptibility of the test species to the hydrophobic antibiotics clindamycin, erythromycin, fucidin, novobiocin and rifampicin, without being directly bactericidal. PEI sensitized the bacteria to the lytic action of the detergent SDS in assays where the bacteria were pretreated with PEI. In assays where PEI and SDS were simultaneously present, no sensitization was observed, indicating that PEI and SDS were inactivating each other. In addition, a sensitizing effect to the nonionic detergent Triton X-100 was observed for P. aeruginosa. In conclusion, PEI was shown to be a potent permeabilizer of the outer membrane of Gram-negative bacteria.
-
-
-
Mycotic acid composition of Corynebacterium glutamicum and its cell surface mutants: effects of growth with glycine and isonicotinic acid hydrazide
More LessAuxotrophic mutants of Corynebacterium glutamicum strain ATCC 13059 (parent of AS019, a rifampicin-resistant variant), which were morphologically distinct from the parent and formed protoplasts more readily, had been isolated previously. Mutants MLB130-133 and MLB194 were more sensitive to growth inhibition by isonicotinic acid hydrazide (INH) and glycine, which caused branching and budding. Fatty acid and mycolic acid (MA) profiles were determined after growth in LBG (Luria broth plus glucose), LBG-glycine (LBG- and LBG-INH (LBG-I). The fatty acid profiles of all strains were similar, except that mutant MLB133 showed some increase in stearic acid (C18:0), normally a minor component, late in the growth cycle and oleic acid proportionately decreased. All strains had five major types of MAs (C32:0, C34:0, C34:1, C36:1, C36:2) but the relative proportion of each varied with the strain, age of culture and medium composition. Mutants MLB133 and MLB194 showed slightly higher levels of non-covalentiy bound MAs than the parent and normally showed a higher proportion of longer-chained, unsaturated MAs. The proportion of extracellular MAs increased with culture age for these mutants. Typically, by late stationary phase, mycolic acids in culture fluids increased to 6.5% of the total MAs for MLB194 and 7.9% for MLB133 compared with 3.5% for the parent strain grown in LBG. The main effect of glycine (2%, w/v) addition was to increase the proportion of mycolic acids found in extracellular fluids (16.1 % for AS019 and 31% for MLB133). The most significant effects of INH were seen when strains were cultured in LBG with 8 mg INH ml−1. When harvested at late stationary phase, strains MLB133 and MLB194 had 18.8% and 21.2% extracellular mycolic acids respectively, with a significant increase in the relative proportion of unsaturated mycolic acids. This effect was not as marked for AS019, which also showed a similar decrease in C32:0 relative to increases in the proportion of C34:1 and C36:2 plus a corresponding increase in the overall proportion of unsaturated mycolic acids and increased extracellular mycolates (8.5%). These results suggest that the mutations in strains MLB133 and MLB194 are associated with synthesis of specific mycolic acids (e.g. C32:0) and attachment of mycolic acids to the cell surface, both of which are likely target sites for glycine and INH action for cell-surface modifications. In addition to previously reported targeting of the peptidoglycan cross-linking, these results show that glycine affects mycolic acid attachment to the cell surface of C. glutamicum.
-
-
-
Acetate kinase from Clostridium acetobutylicum: a highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis
More LessAcetate kinase (ATP:phosphotransferase, EC 2.7.2.1) has been purified 294-fold from acid-producing cells of Clostridium acetobutylicum DSM 1731 to a specific activity of 1087 U mg−1 (ADP-forming direction). The dimeric enzyme consisted of subunits with a molecular mass of 43 kDa. The molecular mass of the native acetate kinase was in the range 87-94 kDa as judged by gel filtration and native gel electrophoresis. The enzyme showed high specificity for the substrates acetate and ATP, and maximal activity was obtained with Mn2+ as divalent cation. The presence of mercury compounds such as HgCl2 and p-hydroxymercuribenzoate resulted in an essential loss of activity. The apparent K m values for acetate, Mg-ATP, acetyl phosphate, and Mg-ADP were 73, 0.37, 0.58 and 0.71 mM. An activity-staining procedure for detection of acetate kinase in crude cell extracts after separation on native polyacrylamide gels was developed. A DNA fragment encoding 246 bp of the acetate kinase gene of C. acetobutylicum DSM 792 was cloned by a PCR-based approach. Northern blot analysis revealed transcription of the gene under acid- and solvent-producing conditions with no significant differences at the level of transcription.
-
- Genome Analysis
-
-
-
Low-resolution sequencing of Rhodobacter sphaeroides 2.A.1T: chromosome II is a true chromosome
More LessThe photosynthetic bacterium Rhodobacter sphaeroides 2.4.1T has two chromosomes, CI (∼3.0 Mb) and CII (∼0.9 Mb). In this study a low-redundancy sequencing strategy was adopted to analyse 23 out of 47 cosmids from an ordered CII library. The sum of the lengths of these 23 cosmid inserts was ∼495 kb, which comprised ∼417 kb of unique DNA. A total of 1145 sequencing runs was carried out, with each run generating 559±268 bases of sequence to give ∼640 kb of total sequence. After editing, ∼2.8% bases per run were estimated to be ambiguous. After the removal of vector and Escherichia coli sequences, the remaining ∼ 565 kb of R. sphaeroides sequences were assembled, generating ∼291 kb of unique sequences. BLASTX analysis of these unique sequences suggested that ∼131 kb (45% of the unique sequence) had matches to either known genes, or database ORFs of hypothetical or unknown function (dORFs). A total of 144 strong matches to the database was found; 101 of these matches represented genes encoding a wide variety of functions, e.g. amino acid biosynthesis, photosynthesis, nutrient transport, and various regulatory functions. Two rRNA operons (rrnB and rrnC) and five tRNAs were also identified. The remaining 160 kb of DNA sequence which did not yield database matches was then analysed using CODONPREFERENCE from the GCG package. This analysis suggested that 122 kb (42% of the total unique DNA sequence) could encode putative ORFs (ports), with the remaining 38 kb (13%) possibly representing non-coding intergenic DNA. From the data so far obtained, CII does not appear to be specialized for encoding any particular metabolic function, physiological state or growth condition. These data suggest that CII contains genes which are functionally as diverse as those found on any other bacterial chromosome and also contains sequences (pORFs) which may prove to be unique to this organism.
-
-
-
-
Sequencing of regions downstream of addA (98°) and citG (28°) in Bacillus subtilis
More LessThe nucleotide sequence of 17.3 kbp downstream of addA (98°) on the Bacillus subtilis chromosome was determined. Twenty putative ORFs were identified. Three of them coincided with known B. subtilis genes, addA, sbcD and wprA. The product of four other ORFs showed similarity to SbcC of Clostridium perfringens, CotH of B. subtilis, 2-hydroxyhepta-2,4-diene-1,7-diodate isomerase of Methanococcus jannaschi and a putative ORF of Pseudomonas syringae. In addition, a sequence of 7.6 kbp downstream of citG (189°) was analysed. Among 10 putative ORFs identified, two coincided with known genes, citG and mrgA, whilst three showed homology with X86780, a sensory protein kinase of Streptomyces hygroscopicus, an alkaline phosphatase regulatory protein and a hypothetical protease, YyxA, of B. subtilis.
-
-
-
A Bacillus subtilis chromosome segment at the 100° to 102° position encoding 11 membrane proteins
More LessThe 25·9 kbp region upstream of nprB at 100°-102° on the Bacillus subtilis chromosome was sequenced. This revealed a known gene, degA, which was previously mislocated on the genetic map. A total of 29 putative ORFs were identified including a cluster of three ORFs whose products show clear homology with sulphate adenylyl pathway enzymes and, in addition, 11 ORFs whose products have one or more membrane domains, as indicated by their hydropathy profiles.
-
-
-
The Bacillus subtilis genome from gerBC (311°) to licR (334°)
As part of the international project to sequence the Bacillus subtilis genome, the DNA region located between gerBC (311°) and licR (334°) was assigned to the Institut Pasteur. In this paper, the cloning and sequencing of 176 kb of DNA and the analysis of the sequence of the entire 271 kb region (6·5% of the B. subtilis chromosome) is described; 273 putative coding sequences were identified. Although the complete genome sequences of seven other organisms (five bacteria, one archaeon and the yeast Saccharomyces cerevisiae) are available in public databases, 65 genes from this region of the B. subtilis chromosome encode proteins without significant similarities to other known protein sequences. Among the 208 other genes, 115 have paralogues in the currently known B. subtilis DNA sequences and the products of 178 genes were found to display similarities to protein sequences from public databases for which a function is known. Classification of these genes shows a high proportion of them to be involved in the adaptation to various growth conditions (non-essential cell wall constituents, catabolic and bioenergetic pathways); a small number of the genes are essential or encode anabolic enzymes.
-
-
-
Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas
More LessPrimers designed from sequences of the gene encoding the elongation factor Tu (tuf gene) of several culturabie mollicutes amplified most of the tuf gene from phytoplasmas of the aster yellows, stolbur and X-disease groups. About 85% of the tuf gene from two aster yellows strains and a tomato stolbur phytoplasma was sequenced. The nucleotide sequence similarity between these related phytoplasmas was between 87·8 and 97·0%, whereas the homology with other mollicutes was 66·3-72·7%. The similarity of the deduced amino acid sequence was significantly higher, ranging from 96·0 to 99·4% among the phytoplasmas and 78·5% to 83·3% between phytoplasmas and the culturabie mollicutes examined. From the nucleotide sequences of the phytoplasma strains, two pairs of primers were designed; one amplified the phytoplasmas of most phylogenetic groups that were established, the other was specific for the aster yellows and stolbur groups. The phytoplasmas of the various groups that were amplified could be distinguished by RFLP analysis using Sau3AI, AluI and Hpall. The aster yellows group could be divided into five Sau3AI RFLP groups. These results showed that the tuf gene has the potential to be used to differentiate and classify phytoplasmas. Southern blot analysis revealed that the tuf gene is present as a single copy.
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)