1887

Abstract

As part of the international project to sequence the genome, the DNA region located between (311°) and (334°) was assigned to the Institut Pasteur. In this paper, the cloning and sequencing of 176 kb of DNA and the analysis of the sequence of the entire 271 kb region (6·5% of the chromosome) is described; 273 putative coding sequences were identified. Although the complete genome sequences of seven other organisms (five bacteria, one archaeon and the yeast ) are available in public databases, 65 genes from this region of the chromosome encode proteins without significant similarities to other known protein sequences. Among the 208 other genes, 115 have paralogues in the currently known DNA sequences and the products of 178 genes were found to display similarities to protein sequences from public databases for which a function is known. Classification of these genes shows a high proportion of them to be involved in the adaptation to various growth conditions (non-essential cell wall constituents, catabolic and bioenergetic pathways); a small number of the genes are essential or encode anabolic enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-10-3313
1997-10-01
2021-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/10/mic-143-10-3313.html?itemId=/content/journal/micro/10.1099/00221287-143-10-3313&mimeType=html&fmt=ahah

References

  1. Abhayawardhane Y., Stewart G.C. 1995; Bacillus subtilis. J Bacteriol 177:765–773
    [Google Scholar]
  2. Albertini A.M., Caramori T., Scoffone F., Scotti C., Galizzi A. 1995; Sequence around the 159° region of the bacillus subtilis genome: The pksx locus spans 33·6 kb. Microbiology 141:299–309
    [Google Scholar]
  3. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  4. Biaudet V., Samson F., Anagnostopoulos C., Ehrlich S.D., Bessières P. 1996; Computerized genetic map of bacillus subtilis. Microbiology 142:2669–2729
    [Google Scholar]
  5. Bruckner R., Shoseyov O., Doi R.H. 1990; Multiple active forms of a novel serine protease from bacillus subtilis. Mol Gen Genet 221:486–490
    [Google Scholar]
  6. Bullock W.O., Fernandez J.M., Short J.M. 1987; A high efficiency plasmid transforming reca escherichia coli strain with β-galactosidase selection. Biotechniques 5:376
    [Google Scholar]
  7. Bult C.J., White O., Olsen G.J. 37 other authors 1996; Complete genome sequence of the methanogenic archaeon, methanococcus jannaschii. Science 273:1058–1073
    [Google Scholar]
  8. Calogero S., Gardan R., Glaser P., Schweizer J., Rapoport G., Debarbouillé M. 1994; Rocr, a novel regulatory protein controlling arginine utilization in bacillus subtilis, belongs to the ntrc/nifa family of transcriptional activators. J Bacteriol 176:1234–1241
    [Google Scholar]
  9. Chambers S.P., Prior S.E., Barstow D.A., Minton N.P. 1988; The pmtl nic– cloning vectors. 1. improved puc polylinker regions to facilitate the use of sonicated dna for nucleotide sequencing. Gene 68:139–149
    [Google Scholar]
  10. Chung C.T., Miller R.H. 1988; A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res 16:3580
    [Google Scholar]
  11. Cruz Ramos H., Boursier L., Moszer I., Kunst F., Danchin A., Glaser P. 1995; Anaerobic transcription activation in bacillus subtilis: Identification of distinct fnr-dependent and independent regulatory mechanisms. EMBO J 14:5984–5994
    [Google Scholar]
  12. Cruz Ramos H., Glaser P., Wray L.V., Fisher S.H. 1997; The bacillus subtilis ureabc operon. J Bacteriol 179:3371–3373
    [Google Scholar]
  13. Danchin A. 1996; Mrna turnover and dna synthesis: A lesson from bacterial genome comparisons. Mol Microbiol 20:895–897
    [Google Scholar]
  14. Dear S., Staden R. 1991; A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res 19:3907–3911
    [Google Scholar]
  15. Donovan W., Zheng L.B., Sandman K., Losick R. 1987; Genes encoding spore coat polypeptides from bacillus subtilis. J Mol Biol 196:1–10
    [Google Scholar]
  16. Fleischmann R.D., Adams M.D., White O. 37 other authors 1995; Whole-genome random sequencing of haemophilus influenzae rd. Science 269:496–512
    [Google Scholar]
  17. Fouet A., Klier A., Rapoport G. 1986; Nucleotide sequence of the sucrase gene of Bacillus Subtilis . Gene 45:221–225
    [Google Scholar]
  18. Fouet A., Arnaud M., Klier A., Rapoport G. 1987; Bacillus subtilis. Proc Natl Acad Sci USA 84:8773–8777
    [Google Scholar]
  19. Fraser C.M., Gocayne J.D., White O. 26 other authors 1995; The minimal gene complement of mycoplasma genitalium. Science 270:397–403
    [Google Scholar]
  20. Gibson T.J. 1984; Studies on the epstein-barr virus genome. Phd Thesis. University of Cambridge
    [Google Scholar]
  21. Glaser P., Kunst F., Debarbouille M., Vertfes A., Danchin A., Dedonder R. 1991; A gene encoding a tyrosine-trna synthetase is located near sacs in bacillus subtilis. DNA Seq 1:251–261
    [Google Scholar]
  22. Glaser P., Kunst F., Arnaud M. 14 other authors 1993; Bacillus subtilis. Mol Microbiol 10:371–384
    [Google Scholar]
  23. Glaser P., Danchin A., Kunst F., Zuber P., Nakano M.M. 1995; Identification and isolation of a gene required for nitrate assimilation and anaerobic growth of bacillus subtilis. J Bacteriol 177:1112–1115
    [Google Scholar]
  24. Goffeau A., Barrell B.G., Bussey H. 13 other authors 1996; Life with 6000 genes. Science 274:563–567
    [Google Scholar]
  25. Hanahan D. 1983; Studies on transformation of escherichia coli with plasmids. J Mol Biol 16:557–580
    [Google Scholar]
  26. Harwood C.R., Wipat A. 1996; Sequencing and functional analysis of the genome of bacillus subtilis strain 168. FEBS Lett 389:84–87
    [Google Scholar]
  27. Hénaut A., Rouxel T., Gleizes A., Moszer I., Danchin A. 1996; Uneven distribution of gatc motifs in the escherichia coli chromosome, its plasmids and its phages. J Mol Biol 257:574–585
    [Google Scholar]
  28. Higgins D.G., Bleasby A.J., Fuchs R. 1992; Clustal v improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191
    [Google Scholar]
  29. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B., Herrmann R. 1996; Complete sequence analysis of the genome of the bacterium mycoplasma pneumoniae. Nucleic Acids Res 24:4420–4449
    [Google Scholar]
  30. Horinouchi S., Weisblum B. 1982; Nucleotide sequence and functional map of pc194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 150:815–825
    [Google Scholar]
  31. Itaya M., Tanaka T. 1991; Complete physical map of the. J Mol Biol 220:631–648
    [Google Scholar]
  32. Kaneko T., Sato S., Kotani H. 21 other authors 1996; Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis Sp. Strain PCC 6803. 2. Sequence Determination of the Entire Genome and Assignment of Potential Protein-Coding Regions . DNA Res 3:109–136
    [Google Scholar]
  33. Karow M.L., Glaser P., Piggot P.J. 1995; Identification of a gene, spolir, that links the activation of σE to the transcriptional activity of σF during sporulation in bacillus subtilis. Proc Natl Acad Sci USA 92:2012–2016
    [Google Scholar]
  34. Kunkel B., Kroos L., Poth H., Youngman P., Losick R. 1989; Temporal and spatial control of the mother-cell regulatory gene spollld of bacillus subtilis. Genes Dev 3:1735–1744
    [Google Scholar]
  35. Kunst F., Devine K. 1991; The project of sequencing the entire bacillus subtilis genome. Res Microbiol 142:905–912
    [Google Scholar]
  36. Kunst F., Rapoport G. 1995; Salt stress is an environmental signal affecting degradative enzyme synthesis in bacillus subtilis. J Bacteriol 177:2403–2407
    [Google Scholar]
  37. Kunst F., Vassarotti A., Danchin A. 1995; Organization of the european bacillus subtilis genome sequencing project. Microbiology 141:249–255
    [Google Scholar]
  38. Kyte J., Doolittle R.F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  39. Lampe M., Binnie C., Schmidt R., Losick R. 1988; Cloned gene encoding the s subunit of bacillus subtilis rna polymerase. Gene 67:13–19
    [Google Scholar]
  40. Londoño-Vallejo J.-A., Stragier P. 1995; Cell-cell signaling pathway activating a developmental transcription factor in bacillus subtilis. Genes Dev 9:503–508
    [Google Scholar]
  41. Londoño-Vallejo J.-A., Fréhel C., Stragier P. 1997; Spoiiq. Mol Microbiol 24:29–39
    [Google Scholar]
  42. Lopez-Diaz I., Clarke S., Mandelstam J. 1986; Spoiid. J Gen Microbiol 132:341–354
    [Google Scholar]
  43. Maeda M., Hidaka M., Nakamura A., Masaki H., Uozumi T. 1994; Cloning, sequencing and expression of thermophilic bacillus sp. Strain tp-90 urease gene complex in escherichia coli. J Bacteriol 176:432–442
    [Google Scholar]
  44. Maniloff J. 1983; Evolution of wall-less prokaryotes. Annu Rev Microbiol 37:477–499
    [Google Scholar]
  45. Marck C. 1988; ‘DNA’ strider: A ‘C’ program for the fast analysis of dna and protein sequences on the apple macintosh family of computers. Nucleic Acids Res 16:1829–1836
    [Google Scholar]
  46. Martinussen J., Glaser P., Ersen P.S., Saxild H.H. 1995; Two genes encoding uracil phosphoribosyltransferase are present in bacillus subtilis. J Bacteriol 177:271–274
    [Google Scholar]
  47. Messing J., Vieira J. 1982; A new pair of m13 vectors for selecting either dna strand of double-digest restriction fragments. Gene 19:269–276
    [Google Scholar]
  48. Miller J.H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  49. Mitchell C., Morris P.W., Lum L., Spiegelman G., Vary J.C. 1992; The amino acid sequence of a bacillus subtilis phosphoprotein that matches an orfy-tsr coding sequence. Mol Microbiol 6:1345–1349
    [Google Scholar]
  50. Mizuno M., Masuda S., Takemaru K., Hosono S., Sato T., Takeuchi M., Kobayashi Y. 1996; Systematic sequencing of the 283 kb 210°-232° region of the bacillus subtilis genome containing the skin element and many sporulation genes. Microbiology 142:3103–3111
    [Google Scholar]
  51. Moszer I., Glaser P., Danchin A. 1991; Multiple is insertion sequences near the replication terminus in escherichia coli k-12. Biochimie 73:1361–1374
    [Google Scholar]
  52. Moszer I., Glaser P., Danchin A. 1995 Subtilist 141:261–268
    [Google Scholar]
  53. Moszer I., Kunst F., Danchin A. 1996; The european bacillus subtilis genome sequencing project: Current status and accessibility of the data from a new world wide web site. Microbiology 142:2987–2991
    [Google Scholar]
  54. Naderio G., Baccigalupi L., Zilhao R., De Felice M., Ricca E. 1996; Bacillus subtilis. J Bacteriol 178:4375–4380
    [Google Scholar]
  55. Niaudet B., Goze A., Ehrlich S.D. 1982; Insertional mutagenesis in bacillus subtilis: Mechanism and use in gene cloning. Gene 19:277–284
    [Google Scholar]
  56. O'Brien C. 1997; Entire e. Coli genome sequenced at last. Nature 385:472
    [Google Scholar]
  57. Ogasawara N., Yoshikawa H. 1996; The systematic sequencing of the bacillus subtilis genome in japan. Microbiology 142:2993–2994
    [Google Scholar]
  58. Ogasawara N., Nakai S., Yoshikawa H. 1994; Systematic sequencing of the 180 kilobase region of the bacillus subtilis chromosome containing the replication origin. DNA Res 1:1–14
    [Google Scholar]
  59. Perego M., Hanstein C., Welsh K.M., Djavakhishvili T., Glaser P., Hoch J.A. 1994; Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in Bacillus Subtilis . Cell 79:1047–1055
    [Google Scholar]
  60. Perego M., Glaser P., Minutello A., Strauch M.A., Leopold K., Fischer W. 1995; Incorporation of d-alanine into lipoteichoic acid and wall teichoic acid in bacillus subtilis: Identification of genes and regulation. J Biol Chem 270:15598–15606
    [Google Scholar]
  61. Perego M., Glaser P., Hoch J.A. 1996; Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in. Mol Microbiol 19:1151–1157
    [Google Scholar]
  62. Popham D.L., Setlow P. 1994; Cloning, nucleotide sequence, mutagenesis, and mapping of the bacillus subtilis pbpd gene, which codes for penicilin-binding protein 4. J Bacteriol 176:7197–7205
    [Google Scholar]
  63. Priest F.G. 1993; Systematics and ecology of bacillus. In Bacillus Subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  64. Putzer H., Brakhage A., Grunberg-Manago M. 1990; Independent genes for two threonyl-trna synthetases in bacillus subtilis. J Bacteriol 172:4593–4602
    [Google Scholar]
  65. Putzer H., Gendron N., Grunberg-Manago M. 1992; Coordinate expression of the two threonyl-trna synthetase genes in bacillus subtilis: Control by transcriptional antitermination involving a conserved regulatory sequence. EMBO J 11:31173127
    [Google Scholar]
  66. Quirk P., Dunkley E., Lee P., Krulwich T. 1993; Identification of a putative bacillus subtilis rho gene. J Bacteriol 175:647–654
    [Google Scholar]
  67. Renna M.G., Najimudin N., Winik L.R., Zahler S.A. 1993; Regulation of the bacillus subtilis alss, alsd, and alsr genes involved in post-exponential-phase production of acetoin. J Bacteriol 175:3863–3875
    [Google Scholar]
  68. Sacco M., Ricca E., Losick R., Cutting S. 1995; An additional gere-controlled gene encoding an abundant spore coat protein from bacillus subtilis. J Bacteriol 177:372–377
    [Google Scholar]
  69. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  70. Santana M., Kunst F., Hullo M.F., Rapoport G., Danchin A., Glaser P. 1992; Molecular cloning, sequencing, and physiological characterization of the qox operon from bacillus subtilis encoding the aa3-600 quinol oxidase. J Biol Chem 267:10225–10231
    [Google Scholar]
  71. Santana M., Lonescu M.S., Vertes A., Longin R., Kunst F., Danchin A., Glaser P. 1994; Bacillus subtilis. J Bacteriol 176:6802–6811
    [Google Scholar]
  72. Silhavy T.J., Berman M.L., Enquist L.W. 1984 Experiments with Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  73. Sloma A., Rufo G.A. Jr, Theriault K.A., Dwyer M., Wilson S.H., Pero J. 1991; Cloning and characterization of the gene for an additional extracellular serine protease of. Bacillus Subtilis 173:6889–6895
    [Google Scholar]
  74. Soldo B., Lazarevic V., Maufil C., Karamata D. 1996; Sequence of the 305°-307° region of the bacillus subtilis chromosome. Microbiology 142:3079–3088
    [Google Scholar]
  75. Sorokin A., Azevedo V., Zumstein E., Galleron N., Ehrlich S.D., Serror P. 1996; Sequence analysis of the bacillus subtilis chromosome region between the sera and kdg loci cloned in a yeast artificial chromosome. Microbiology 142:2005–2016
    [Google Scholar]
  76. Stragier P., Losick R. 1996; Molecular genetics of sporulation in bacillus subtilis. Annu Rev Genetics 30:297–341
    [Google Scholar]
  77. Swinfield T.J., Oultram J.D., Thompson D.E., Brehm J.K., Minton N.P. 1990; Physical characterisation of the replication region of the streptococcus faecalis plasmid pambl. Gene 87:79–90
    [Google Scholar]
  78. Tobisch S., Glaser P., Krüger S., Hecker M. 1997; Identification and characterization of a new β-glucoside utilization system in bacillus subtilis. J Bacteriol 179:496–506
    [Google Scholar]
  79. Trach K., Chapman J., Piggot P., Lecoq D., Hoch J. 1988; Complete sequence and transcriptional analysis of the spo0f region of the bacillus subtilis chromosome. J Bacteriol 170:4194–4208
    [Google Scholar]
  80. Wipat A., Carter N., Brignell S.C., Guy B.J., Piper K., Sanders J., Emmerson P.T., Harwood C.R. 1996; The dnab-phea (256°–240°) region of the bacillus subtilis chromosome containing genes responsible for stress responses, the utilization of plant cell walls and primary metabolism. Microbiology 142:3067–3078
    [Google Scholar]
  81. Woodson K., Devine K.M. 1994; Analysis of a ribose transport operon from bacillus subtilis. Microbiology 140:1829–1838
    [Google Scholar]
  82. Wray L.V., Atkinson M.R., Fisher S.H. 1994; The nitrogenregulated bacillus subtilis nrgab operon encodes a membrane protein and a protein highly similar to the escherishia coli glnbencoded pii protein. J Bacteriol 176:108–114
    [Google Scholar]
  83. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved m13 phage cloning vectors and host strains: Nucleotide sequences of the m13mpl8 and puc19 vectors. Gene 33:103–119
    [Google Scholar]
  84. Yoshida K., Shindo K., Sano H., Seki S., Fujimura M., Yanai N., Miwa Y., Fujita Y. 1996; Sequencing of a 65 kb region of the bacillus subtilis genome containing the lie and cel loci, and creation of a 177 kb contig covering the gnt-sacxy region. Microbiology 142:3113–3123
    [Google Scholar]
  85. Yoshikawa H., Kazami J., Yamashita S., Chibazakura T., Sone H., Kawamura F., Oda M., Isaka M., Kobayashi Y., Saito H. 1986; Revised assignment for the bacillus subtilis spo0f gene and its homology with spo0a and with two escherichia coli genes. Nucleic Acids Res 14:1063–1072
    [Google Scholar]
  86. Zukowski M., Miller L., Cogswell P., Chen K., Aymerich S., Steinmetz M. 1990; Nucleotide sequence of the sacs locus of bacillus subtilis reveals the presence of two regulatory genes. Gene 90:153–155
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-10-3313
Loading
/content/journal/micro/10.1099/00221287-143-10-3313
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error