1887

Abstract

Many bacteria can synthesize the cofactor pyrroloquinoline quinone (PQQ), a cofactor of several dehydrogenases, including glucose dehydrogenase (GCD). Among the enteric bacteria, has been shown to contain the genes required for PQQ biosynthesis. and were thought to be unable to synthesize PQQ but it has been reported that strain EF260, a derivative of FB8, can synthesize PQQ after mutation and can oxidize glucose to gluconate via the GCD/PQQ pathway (F. Biville, E. Turlin & F. Gasser, 1991, 137, 1775-1782). We have reinvestigated this claim and conclude that it is most likely erroneous. (i) Strain EF260, isolated originally by Biville and coworkers, was unable to synthesize a holo-enzyme GCD unless PQQ was supplied to the growth medium. No GCD activity could be detected in membrane fractions. (ii) The amount of PQQ detected in the growth medium of EF260 was very low and not very different from that found in a medium with its parent strain or in a medium containing no cells. (iii) EF260 cells were unable to produce gluconate from glucose via the PQQ/GCD pathway. (iv) Introduction of a ::Cm deletion in EF260, eliminating GCD, did not affect glucose metabolism. This suggested a pathway for glucose metabolism other than the PQQ/GCD pathway, (v) Glucose uptake and metabolism in EF260 involved a low-affinity transport system of unknown identity, followed most likely by phosphorylation via glucokinase. It is concluded that cannot synthesize PQQ and that it lacks genes required for PQQ biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-10-3149
1997-10-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/10/mic-143-10-3149.html?itemId=/content/journal/micro/10.1099/00221287-143-10-3149&mimeType=html&fmt=ahah

References

  1. Ameyama M., Nonobe M., Shinagawa E., Matsushita K., Takimoto K., Adachi O. 1986; Purification and characterization of the quinoprotein d-glucose dehydrogenase apoenzyme from escherichia coli. Agric Biol Chem 50:49–57
    [Google Scholar]
  2. Biville F., Turlin E., Gasser F. 1991; Mutants of escherichia coli producing pyrroloquinoline quinone. J Gen Microbiol 137:1775–1782
    [Google Scholar]
  3. Close T.J., Rodriguez R.L. 1982; Construction and characterization of the chloramphenicol-resistance gene cartridge: A new approach to the transcriptional mapping of extrachromosomal elements. Gene 20:305–316
    [Google Scholar]
  4. Duine J.A. 1991; Quinoproteins: Enzymes containing the quinonoid cofactor pyrroloquinoline quinone, topaquinone or tryptophan-tryptophan quinone. Eur J Biochem 200:271–284
    [Google Scholar]
  5. Goosen N., Horsman H.P.A., Huinen R.G.M., Van De Putte P. 1989; Acinetobacter calcoaceticus. J Bacteriol 171:447–455
    [Google Scholar]
  6. Goosen N., Huinen R.G.M., Van De Putte P. 1992; A 24amino-acid polypeptide is essential for the biosynthesis of the coenzyme pyrrolo-quinoline-quinone. J Bacteriol 174:1426–1427
    [Google Scholar]
  7. Henderson P.J.F., Giddens R.A. 1977; 2-deoxygalactose, a substrate for the galactose-transport system of escherichia coli. Biochem J 168:15–22
    [Google Scholar]
  8. Hommes R.W.J., Postma P.W., Neijssel O.M., Tempest D.W., Dokter P., Duine J.A. 1984; Evidence for a glucose dehydrogenase apo-enzyme in several strains of escherichia coli. FEMS Microbiol Lett 24:329–333
    [Google Scholar]
  9. Hommes R.W.J., Loenen W.A.M., Neijssel O.M., Postma P.W. 1986; Galactose metabolism in gal mutants of salmonella typhimurium and escherichia coli. FEMS Microbiol Lett 36:187–190
    [Google Scholar]
  10. Houck D.R., Hanners J.L., Unkefer C.J. 1988; Biosynthesis of pyrroloquinoline quinone. 1. identification of biosynthetic precursors using 1sc labeling and nmr spectroscopy. J am Chem Soc 110:6920–6921
    [Google Scholar]
  11. Houck D.R., Hanners J.L., Unkefer C.J. 1991; Biosynthesis of pyrroloquinoline quinone. 2. biosynthetic assembly from glutamate and tyrosine. J am Chem Soc 113:3162–3166
    [Google Scholar]
  12. Klinman J.P. 1996; New quinocofactors in eukaryotes. J Biol Chem 271:27189–27192
    [Google Scholar]
  13. Klinman J.P., Mu D. 1994; Quinoenzymes in biology. Annu Rev Biochem 63:299–344
    [Google Scholar]
  14. Liu S.-T., Lee L.-Y., Tai C.-Y., Hung C.-H., Chang Y.-S., Wolfram J.H., Rogers R., Goldstein A.H. 1992; Cloning of an erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in escherichia coli hb101: Nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J Bacteriol 174:5814–5819
    [Google Scholar]
  15. Matsudaira P. 1987; Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 26210035–10038
    [Google Scholar]
  16. Matsushita K., Adachi O. 1993; PQQ, a growth-stimulating substance for microorganisms. In Principles and Applications of Quinoproteins pp. 355–364 Edited by Davidson V. L. New York: Marcel Dekker;
    [Google Scholar]
  17. Matsushita K., Shinagawa E., Adachi O., Ameyama M. 1979; Membrane-bound d-gluconate dehydrogenase from pseudomonas aeruginosa. Purification and structure of cytochromebinding form. J Biochem 85:1173–1181
    [Google Scholar]
  18. Matsushita K., Ohno Y., Shinagawa E., Adachi O., Ameyama M. 1980; Membrane-bound d-glucose dehydrogenase from pseudomonas sp: Solubilization, purification and characterization. Agric Biol Chem 44:1505–1512
    [Google Scholar]
  19. Matsushita K., Shinagawa E., Ameyama M. 1982; D gluconate dehydrogenase from bacteria, 2-keto-d-gluconate yielding, membrane-bound. Methods Enzymol 89:187–193
    [Google Scholar]
  20. Matsushita K., Patel L., Kaback H.R. 1984; Cytochrome o type oxidase from escherichia coli. Characterization of the enzyme and mechanism of electrochemical proton gradient generation. Biochemistry 23:4703–4714
    [Google Scholar]
  21. Matsushita K., Shinagawa E., Adachi O., Ameyama M. 1989; Quinoprotein d-glucose dehydrogenase of the acinetobacter calcoaceticus respiratory chain: Membrane-bound and soluble forms are different molecular species. Biochemistry 28:6276–6280
    [Google Scholar]
  22. Matsushita K., Toyama H., Ameyama M., Adachi O., Dewanti A., Duine J.A. 1995; Soluble and membrane-bound quinoprotein d-glucose dehydrogenase of the acinetobacter calcoaceticus ; the binding process of pqq to the apoenzymes. Biosci Biotech Biochem 59:1548–1555
    [Google Scholar]
  23. Meulenberg J.J.M., Seliink E., Loenen W.A.M., Riegman N.H., Van Kleef M., Postma P.W. 1990; Cloning of klebsiella pneumoniae pqq genes and pqq biosynthesis in escherichia coli. FEMS Microbiol Lett 71:337–344
    [Google Scholar]
  24. Meulenberg J., Seliink E., Riegman N.H., Postma P.W. 1992; Nucleotide sequence and structure of the klebsiella pneumoniae pqq operon. Mol Gen Genet 232:284–294
    [Google Scholar]
  25. Morris C.J., Biville F., Turlin E., Lee E., Ellermann K., Fan W.-H., Ramamoorthi R., Springer A.L., Lidstrom M.E. 1994; Isolation, phenotypic characterization, and complementation analysis of mutants of methylobacterium extorquens ami unable to synthesize pyrroloquinoline quinone and sequences of pqqd, pqqg, and pqqc. J Bacteriol 176:1746–1755
    [Google Scholar]
  26. Nagelkerke F., Postma P. W. (1978). 2-deoxygalactose, a specific substrate of the salmonella typhimurium galactose permease: Its use for the isolation of galp mutants. J Bacteriol 133:607–613
    [Google Scholar]
  27. Neijssel O.M., Tempest D.W., Postma P.W., Duine J.A., FrankJzn J. 1983; Glucose metabolism by k+-limited klebsiella aerogenes, evidence for the involvement of a quinoprotein glucose dehydrogenase. FEMS Microbiol Lett 20:35–39
    [Google Scholar]
  28. Postma P.W. 1977; Galactose transport in salmonella typhimurium. J Bacteriol 129:630–639
    [Google Scholar]
  29. Postma P.W., Schuitema A., Kwa C. 1981; Regulation of methyl β-galactoside permease activity in pts and crr mutants of salmonella typhimurium. Mol Gen Genet 181:448–453
    [Google Scholar]
  30. Schnider U., Keel C., Voisard C., Dgfago G., Haas D. 1995; Tn5-directed cloning of pqq genes from pseudomonas fluorescens chao: Mutational inactivation of the genes results in overproduction of the antibiotic pyoluteorin. Appl Environ Microbiol 61:3856–3864
    [Google Scholar]
  31. Springer A.L., Ramamoorthi R., Lidstrom M.E. 1996; Characterization and nucleotide sequence of pqqe and pqqf in methylobacterium extorquens ami. J Bacteriol 178:2154–2157
    [Google Scholar]
  32. Toyama H., Chistoserdova L., Lidstrom M.E. 1997; Sequence analysis of pqq genes required for biosynthesis of pyrroloquinoline quinone in methylobacterium extorquens ami and the purification of a biosynthetic intermediate. Microbiology 143:595–602
    [Google Scholar]
  33. Turlin E., Gasser F., Biville F. 1996; Sequence and functional analysis of an escherichia coli dna fragment able to complement pqqe and pqqf mutants from methylobacterium organophilum. Biochimie 78:822–831
    [Google Scholar]
  34. Van Kleef M.A.G., Duine J.A. 1988; L-tyrosine is the precursor of pqq biosynthesis in hyphomicrobium x. FEBS Lett 237:91–97
    [Google Scholar]
  35. Van Schie B.J., De Mooy O.H., Linton J.D., Van Dijken J.P., Kuenen J.G. 1987; Pqq-dependent production of gluconic acid by acinetobacter, agrobacterium and rhizobium species. J Gen Microbiol 133867–875
    [Google Scholar]
  36. Velterop J.S. 1995 The Biosynthesis of PQQ in Klebsiella Pneumoniae Ph.D. Thesis. University of Amsterdam;
    [Google Scholar]
  37. Velterop J.S., Seliink E., Meulenberg J.J.M., David S., Bulder L., Postma P.W. 1995; Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J Bacteriol 177:5088–5098
    [Google Scholar]
  38. Yamada M., Asaoka S., Saier M.H., Yamada Y. 1993; Characterization of the ged gene from escherichia coli k-12 w3110 and its expression regulation. J 175:568–571
    [Google Scholar]
  39. Yamada M., Sumi K., Matsushita K., Adachi O., Yamada Y. 1993; Topological analysis of quinoprotein glucose dehydrogenase in escherichia coli and its ubiquinone-binding site. J Biol Chem 268:12812–12817
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-10-3149
Loading
/content/journal/micro/10.1099/00221287-143-10-3149
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error