- Volume 87, Issue 10, 2006
Volume 87, Issue 10, 2006
- Review
-
-
-
Flavivirus membrane fusion
More LessFlavivirus membrane fusion is mediated by a class II viral fusion protein, the major envelope protein E, and the fusion process is extremely fast and efficient. Understanding of the underlying mechanisms has been advanced significantly by the determination of E protein structures in their pre- and post-fusion conformations and by the elucidation of the quarternary organization of E proteins in the viral envelope. In this review, these structural data are discussed in the context of functional and biochemical analyses of the flavivirus fusion mechanism and its characteristics are compared with those of other class II- and class I-driven fusion processes.
-
-
-
-
Measles virus: cellular receptors, tropism and pathogenesis
More LessMeasles virus (MV), a member of the genus Morbillivirus in the family Paramyxoviridae, is an enveloped virus with a non-segmented, negative-strand RNA genome. It has two envelope glycoproteins, the haemagglutinin (H) and fusion proteins, which are responsible for attachment and membrane fusion, respectively. Human signalling lymphocyte activation molecule (SLAM; also called CD150), a membrane glycoprotein of the immunoglobulin superfamily, acts as a cellular receptor for MV. SLAM is expressed on immature thymocytes, activated lymphocytes, macrophages and dendritic cells and regulates production of interleukin (IL)-4 and IL-13 by CD4+ T cells, as well as production of IL-12, tumour necrosis factor alpha and nitric oxide by macrophages. The distribution of SLAM is in accord with the lymphotropism and immunosuppressive nature of MV. Canine distemper virus and Rinderpest virus, other members of the genus Morbillivirus, also use canine and bovine SLAM as receptors, respectively. Laboratory-adapted MV strains may use the ubiquitously expressed CD46, a complement-regulatory molecule, as an alternative receptor through amino acid substitutions in the H protein. Furthermore, MV can infect SLAM− cells, albeit inefficiently, via the SLAM- and CD46-independent pathway, which may account for MV infection of epithelial, endothelial and neuronal cells in vivo. MV infection, however, is not determined entirely by the H protein–receptor interaction, and other MV proteins can also contribute to its efficient growth by facilitating virus replication at post-entry steps. Identification of SLAM as the principal receptor for MV has provided us with an important clue for better understanding of MV tropism and pathogenesis.
-
- Animal
-
- RNA viruses
-
-
The double-stranded RNA-induced apoptosis pathway is involved in the cytopathogenicity of cytopathogenic Bovine viral diarrhea virus
More LessBovine viral diarrhea virus (BVDV), which is classified in the genus Pestivirus, family Flaviviridae, can be divided into two biotypes according to its ability to induce a cytopathic effect in tissue culture cells. The mechanisms through which cytopathogenic (cp) BVDV induces cell death and non-cytopathogenic (ncp) BVDV causes persistent infection without producing cell death remain unclear. Here, it was found that the overexpression of four apoptosis-related cellular mRNAs in cells infected with cpBVDV could also be caused by synthetic dsRNA. In fact, it was found that the amount of dsRNA produced by cpBVDV considerably exceeded the amount yielded by ncpBVDV. To evaluate the possible involvement of dsRNA in the induction of apoptosis, this study examined whether RNAi-mediated depletion of two dsRNA-reactive cellular factors, dsRNA-dependent protein kinase and 2′,5′-oligoadenylate synthetase 1, resulted in the prevention of cpBVDV-induced apoptosis. Although the induction of apoptosis was reduced after the suppression of either factor alone, the simultaneous silencing of both factors resulted in an almost complete inhibition of apoptosis without affecting viral titre. These results showed that dsRNA is the main trigger of apoptosis in cpBVDV-infected cells and that the cytopathogenicity of BVDV depends on the yield potential of dsRNA. In contrast, ncpBVDV yielded minimal levels of dsRNA, thereby establishing a persistent infection without inducing apoptosis. This report supports the significance of viral dsRNA as a trigger of innate immune responses.
-
-
-
Priming with DNA encoding E2 and boosting with E2 protein formulated with CpG oligodeoxynucleotides induces strong immune responses and protection from Bovine viral diarrhea virus in cattle
More LessThe objective of this study was to develop an optimal vaccination strategy for Bovine viral diarrhea virus (BVDV). The E2 protein of BVDV plays a major protective role against BVDV infection. In order to be able to compare DNA, protein and DNA prime–protein boost regimens, a plasmid was constructed encoding a secreted form of the NADL strain E2 protein (pMASIA-tPAsΔE2). Furthermore, a pure secreted recombinant ΔE2 (rΔE2) protein was produced. The rΔE2 protein was formulated with a combination of Emulsigen and CpG oligodeoxynucleotide. Groups of calves were immunized with pMASIA-tPAsΔE2 or with rΔE2, or first with pMASIA-tPAsΔE2 and then with rΔE2. To evaluate the protection against BVDV, calves were challenged with BVDV strain NY-1 after the last immunization. Although all immunized calves developed humoral and cellular immune responses, the antibody responses in the DNA prime–protein boost group were stronger than those elicited by either the DNA vaccine or the protein vaccine. In particular, E2-specific antibody titres were enhanced significantly after boosting the ΔE2 DNA-primed calves with rΔE2 protein. Moreover, protection against BVDV challenge was obtained in the calves treated with the DNA prime–protein boost vaccination regimen, as shown by a significant reduction in weight loss, viral excretion and lymphopenia, compared with the unvaccinated calves and the animals immunized with the DNA or protein only. These results demonstrate the advantage of a DNA prime–protein boost vaccination approach in an outbred species.
-
-
-
Preferential association of Hepatitis C virus with apolipoprotein B48-containing lipoproteins
Hepatitis C virus (HCV) in cell culture has a density comparable to that of other members of the family Flaviviridae, whereas in vivo infectious particles are found partially in low-density fractions, associated with triacylglycerol (TG)-rich lipoproteins (TRLs). In the blood of infected patients, HCV circulates as heterogeneous particles, among which are lipo-viroparticles (LVPs), globular particles rich in TG and containing viral capsid and RNA. The dual viral and lipoprotein nature of LVPs was addressed further with respect to apolipoprotein composition and post-prandial dynamic lipid changes. The TRLs exchangeable apoE, -CII and -CIII, but not the high-density lipoprotein apoA-II, were present on LVPs, as well as the viral envelope proteins. apoB100 and-B48, the two isoforms of the non-exchangeable apoB, were represented equally on LVPs, despite the fact that apoB48 was barely detectable in the plasma of these fasting patients. This indicates that a significant fraction of plasma HCV was associated with apoB48-containing LVPs. Furthermore, LVPs were enriched dramatically and rapidly in triglycerides after a fat meal. As apoB48 is synthesized exclusively by the intestine, these data highlight the preferential association of HCV with chylomicrons, the intestine-derived TRLs. These data raise the question of the contribution of the intestine to the viral load and suggest that the virus could take advantage of TRL assembly and secretion for its own production and of TRL fate to be delivered to the liver.
-
-
-
Role of the yellow fever virus structural protein genes in viral dissemination from the Aedes aegypti mosquito midgut
More LessLive-attenuated virus vaccines are key components in controlling arboviral diseases, but they must not disseminate in or be transmitted by mosquito vectors. Although the cycles in which many mosquito-borne viruses are transmitted are well understood, the role of viral genetics in these processes has not been fully elucidated. Yellow fever virus (YFV) is an important arbovirus and the prototype member of the family Flaviviridae. Here, YFV was used in Aedes aegypti mosquitoes as a model to investigate the genetic basis of infection and dissemination in mosquitoes. Viruses derived from infectious clones and chimeric viruses with defined sequential manipulations were used to investigate the influence of specific sequences within the membrane and envelope structural protein genes on dissemination of virus from the mosquito midgut. Substitution of domain III of the envelope protein from a midgut-restricted YFV into a wild-type YFV resulted in a marked decrease in virus dissemination, suggesting an important role for domain III in this process. However, synergism between elements within the flavivirus structural and non-structural protein genes may be necessary for efficient virus escape from the mosquito midgut.
-
-
-
Antiviral action of nitric oxide on dengue virus type 2 replication
More LessRecently, nitric oxide (NO) has been shown to suppress dengue virus (DENV) RNA and protein accumulation in infected cells. In this report, the potential target of the inhibitory effect of NO was studied at the molecular level. The NO donor, S-nitroso-N-acetylpenicillamine (SNAP), showed an inhibitory effect on RNA accumulation at around 8–14 h post-infection, which corresponded to the step of viral RNA synthesis in the DENV life cycle. The activity of the viral replicase isolated from SNAP-treated DENV-2-infected cells was suppressed significantly compared with that of the negative-control N-acetyl-dl-penicillamine (NAP)-treated cells. Further investigations on the molecular target of NO action showed that the activity of recombinant DENV-2 NS5 in negative-strand RNA synthesis was affected in the presence of 5 mM SNAP in in vitro RNA-dependent RNA polymerase (RdRp) assays, whereas the RNA helicase activity of DENV-2 NS3 was not inhibited up to a concentration of 15 mM SNAP. These results suggest that the inhibitory effect of NO on DENV infection is partly via inhibition of the RdRp activity, which then downregulates viral RNA synthesis.
-
-
-
The 3′ end of the foot-and-mouth disease virus genome establishes two distinct long-range RNA–RNA interactions with the 5′ end region
More LessThe untranslated regions (UTRs) of the foot-and-mouth disease virus (FMDV) genome contain multiple functional elements. In the 5′ UTR, the internal ribosome entry site (IRES) element governs cap-independent translation initiation, whereas the S region is presumably involved in RNA replication. The 3′ UTR, composed of two stem–loops and a poly(A) tract, is required for viral infectivity and stimulates IRES activity. Here, it was found that the 3′ end established two distinct strand-specific, long-range RNA–RNA interactions, one with the S region and another with the IRES element. These interactions were not observed with the 3′ UTR of a different picornavirus. Several results indicated that different 3′ UTR motifs participated in IRES or S region interactions. Firstly, a high-order structure adopted by both the entire IRES and the 3′ UTR was essential for RNA interaction. In contrast, the S region interacted with each of the stem–loops. Secondly, S–3′ UTR interaction but not IRES–3′ UTR interaction was dependent on a poly(A)-dependent conformation. However, no other complexes were observed in mixtures containing the three transcripts, suggesting that these regions did not interact simultaneously with the 3′ UTR probe. Cellular proteins have been found to bind the S region and one of these also binds to the 3′ UTR in a competitive manner. Our data suggest that 5′–3′-end bridging through both direct RNA–RNA contacts and RNA–protein interactions may play an essential role in the FMDV replication cycle.
-
-
-
Formerly unclassified, acid-stable equine picornaviruses are a third equine rhinitis B virus serotype in the genus Erbovirus
More LessAcid-stable equine picornaviruses (ASPs) were identified as a distinct serotype of equine picornaviruses that were isolated from nasal swabs taken from horses with acute febrile respiratory disease in the UK and Japan, and were placed in the group of unclassified picornaviruses. The nucleotide sequence of the P1 region, encoding the capsid proteins, was determined for three ASP isolates from the UK and the sequences were aligned with published sequences of Equine rhinitis B virus (ERBV), genus Erbovirus, including acid-labile ERBV1 and ERBV2 and the recently identified acid-stable ERBV1. The ASPs belong to the same phylogenetic group, composed of five acid-stable ERBV1 isolates. ERBV1 rabbit antiserum neutralized the ASP isolates at approximately 1/10 titre relative to acid-stable and acid-labile ERBV1 isolates, supporting prior findings that ASPs are a distinct serotype, albeit cross-neutralizing weakly with ERBV1. The genus Erbovirus therefore presently comprises three serotypes: ERBV1, ERBV2 and the proposed ERBV3.
-
-
-
Rubella virus pseudotypes and a cell–cell fusion assay as tools for functional analysis of the rubella virus E2 and E1 envelope glycoproteins
More LessThe rubivirus Rubella virus contains the two envelope glycoproteins E2 and E1 as a heterodimeric spike complex embedded in its lipid envelope. The functions of both proteins, especially of E2, in the process of viral entry are still not entirely understood. In order to dissect E2 and E1 entry functions from post-entry steps, pseudotypes of lentiviral vectors based on Simian immunodeficiency virus were used. C-terminally modified E2 and E1 variants successfully pseudotyped lentiviral vector particles. This is the first report to show that not only E1, but also E2, is able to mediate infectious viral entry. Furthermore, a cell–cell fusion assay was used to further clarify membrane-fusion activities of E2 and E1 as one of the early steps of infection. It was demonstrated that the capsid protein, when coexpressed in cis, enhances the degree of E2- and E1-mediated cell–cell fusion.
-
-
-
Mutation of the Rev-binding loop in the human immunodeficiency virus 1 leader causes a replication defect characterized by altered RNA trafficking and packaging
An internal RNA loop, located within the packaging signal of human immunodeficiency virus 1, that resembles the Rev-responsive element (RRE) closely was identified previously. Subsequent in vitro studies confirmed that the loop, termed loop A, could bind Rev protein specifically. Its proximity to the major splice donor has suggested a role for Rev–loop A interaction supplementary to or preceding that of the Rev–RRE interaction. To investigate this further in a replication-competent provirus, loop A was mutated to decrease its affinity for Rev. Impairing the Rev–loop A interaction led to reduced nuclear export of viral genomic RNA. RNA packaging decreased by approximately 30 %. Viral protein production and export of virus particles appeared normal; however, the virus was severely replication-deficient. The loop A sequence, which is 98 % conserved amongst viral isolates, is implicated in several cis-acting functions critical to virus viability.
-
-
-
Nora virus, a persistent virus in Drosophila, defines a new picorna-like virus family
More LessSeveral viruses, including picornaviruses, are known to establish persistent infections, but the mechanisms involved are poorly understood. Here, a novel picorna-like virus, Nora virus, which causes a persistent infection in Drosophila melanogaster, is described. It has a single-stranded, positive-sense genomic RNA of 11879 nt, followed by a poly(A) tail. Unlike other picorna-like viruses, the genome has four open reading frames (ORFs). One ORF encodes a picornavirus-like cassette of proteins for virus replication, including an iflavirus-like RNA-dependent RNA polymerase and a helicase that is related to those of mammalian picornaviruses. The three other ORFs are not closely related to any previously described viral sequences. The unusual sequence and genome organization in Nora virus suggest that it belongs to a new family of picorna-like viruses. Surprisingly, Nora virus could be detected in all tested D. melanogaster laboratory stocks, as well as in wild-caught material. The viral titres varied enormously, between 104 and 1010 viral genomes per fly in different stocks, without causing obvious pathological effects. The virus was also found in Drosophila simulans, a close relative of D. melanogaster, but not in more distantly related Drosophila species. It will now be possible to use Drosophila genetics to study the factors that control this persistent infection.
-
- DNA viruses
-
-
Herpes simplex virus type 1 ICP0 localizes in the stromal layer of infected rabbit corneas and resides predominantly in the cytoplasm and/or perinuclear region of rabbit keratocytes
Herpes stromal keratitis (HSK) results from the reactivation of herpes simplex virus type-1 (HSV-1) in the cornea. The subsequent corneal inflammation and neovascularization may lead to scarring and visual loss. The cellular and molecular mechanisms underlying HSK remain unknown. The presence of stromal HSV-1 viral proteins or antigens in the HSK cornea remains a subject of debate. It was recently reported that HSV-1 ICP0 rapidly diffuses out of infected rabbit corneas. To investigate further the presence of HSV-1 ICP0 in the infected cornea, particularly in the corneal stroma, ex vivo confocal microscopy was used to scan rabbit corneas infected with the virus ICP0–EYFP, an HSV-1 derivative (strain 17+) that expresses ICP0 fused to the enhanced yellow fluorescent protein (EYFP). These results demonstrate that ICP0 is expressed in the corneal epithelium and stromal cells (keratocytes) of infected rabbit corneas throughout acute infection. Furthermore, expression of ICP0–EYFP appears localized to punctate, granular deposits within stromal keratocytes, showing both a cytoplasmic and perinuclear localization. These findings provide new data demonstrating that anterior corneal keratocytes become infected and express ICP0 during acute HSV-1 infection.
-
-
-
Neurotropism of herpes simplex virus type 1 in brain organ cultures
The mechanism of herpes simplex virus type 1 (HSV-1) penetration into the brain and its predilection to infect certain neuronal regions is unknown. In order to study HSV-1 neurotropism, an ex vivo system of mice organotypic brain slices was established and the tissue was infected with HSV-1 vectors. Neonate tissues showed restricted infection confined to leptomeningeal, periventricular and cortical brain regions. The hippocampus was the primary parenchymatous structure that was also infected. Infection was localized to early progenitor and ependymal cells. Increasing viral inoculum increased the intensity and enlarged the infected territory, but the distinctive pattern of infection was maintained and differed from that observed with adenovirus and Vaccinia virus. Neonate brain tissues were much more permissive for HSV-1 infection than adult mouse brain tissues. Taken together, these results indicate a complex interaction of HSV-1 with different brain-cell types and provide a useful vehicle to elucidate the mechanisms of viral neurotropism.
-
-
-
Glycoprotein G is a virulence factor in infectious laryngotracheitis virus
Infectious laryngotracheitis virus (ILTV; Gallid herpesvirus 1) is an alphaherpesvirus that causes acute respiratory disease in chickens. The role of glycoprotein G (gG) in vitro has been investigated in a number of alphaherpesviruses, but the relevance of gG in vivo in the pathogenicity of ILTV or in other alphaherpesviruses is unknown. In this study, gG-deficient mutants of ILTV were generated and inoculated into specific-pathogen-free chickens to assess the role of gG in pathogenicity. In chickens, gG-deficient ILTV reached a similar titre to wild-type (wt) ILTV but was significantly attenuated with respect to induction of clinical signs, effect on weight gain and bird mortality. In addition, an increased tracheal mucosal thickness, reflecting increased inflammatory cell infiltration at the site of infection, was detected in birds inoculated with gG-deficient ILTV compared with birds inoculated with wt ILTV. The reinsertion of gG into gG-deficient ILTV restored the in vivo phenotype of the mutant to that of wt ILTV. Quantitative PCR analysis of the expression of the genes adjacent to gG demonstrated that they were not affected by the deletion of gG and investigations in vitro confirmed that the phenotype of gG-deficient ILTV was consistent with unaltered expression of these adjacent genes. This is the first reported study to demonstrate definitively that gG is a virulence factor in ILTV and that deletion of gG from this alphaherpesvirus genome causes marked attenuation of the virus in its natural host.
-
-
-
Human cytomegalovirus-induced reduction of extracellular matrix proteins in vascular smooth muscle cell cultures: a pathomechanism in vasculopathies?
Human cytomegalovirus (HCMV) infection appears to be linked to the pathogenesis of atherosclerosis. An association between HCMV infection and an enhanced restenosis rate as well as the induction of vasculopathies after solid organ transplantation has been documented. Knowledge of the cellular and molecular basis of these findings is limited, however. By Northern blot and RT-PCR analysis of human foreskin fibroblasts (HFF) and human coronary artery smooth muscle cells (SMC), we identified extracellular matrix (ECM) genes that were downregulated after HCMV infection, including collagen type I and fibronectin. Quantitative immunoassays showed a significant reduction of soluble collagen type I and fibronectin proteins in supernatants of both cell types. This was shown to be a direct effect of HCMV infection and not due to a response to interferons released from infected cells, since neutralization of alpha and beta interferon activity could not block virus-induced downregulation of matrix proteins. As the amount of ECM depends on both synthesis and degradation, we also assessed the influence of HCMV on the activity of matrix metalloproteinases (MMP). Interestingly, a significant difference in virus-induced matrix degradation could be shown between the two cell types. HCMV upregulated MMP-2 protein and activity in SMC but not in HFF. Thus, HCMV infection of SMC reduces ECM dramatically by inducing two independent mechanisms that influence synthesis as well as degradation of ECM. These may represent molecular mechanisms for HCMV-induced pathogenesis of inflammatory vasculopathies and may facilitate dissemination of HCMV by promoting the detachment of infected cells in vivo.
-
-
-
Cell target genes of Epstein–Barr virus transcription factor EBNA-2: induction of the p55α regulatory subunit of PI3-kinase and its role in survival of EREB2.5 cells
Microarray analysis covering most of the annotated RNAs in the human genome identified a panel of genes induced by the Epstein–Barr virus (EBV) EBNA-2 transcription factor in the EREB2.5 human B-lymphoblastoid cell line without the need for any intermediate protein synthesis. Previous data indicating that PIK3R1 RNA (the α regulatory subunit of PI3-kinase) was induced were confirmed, but it is now shown that it is the p55α regulatory subunit that is induced. Several EBV-immortalized lymphoblastoid cell lines were shown to express p55α. Expression of PI3-kinase p85 regulatory and p110 catalytic subunits was not regulated by EBNA-2. Proliferation of EREB2.5 lymphoblastoid cells was inhibited by RNAi knock-down of p55α protein expression, loss of p55α being accompanied by an increase in apoptosis. p55α is thus a functional target of EBNA2 in EREB2.5 cells and the specific regulation of p55α by EBV will provide an opportunity to investigate the physiological function of p55α in this human cell line.
-
-
-
Human cellular protein VRK2 interacts specifically with Epstein–Barr virus BHRF1, a homologue of Bcl-2, and enhances cell survival
More LessBHRF1, an early gene product of Epstein–Barr virus (EBV), is structurally and functionally homologous to Bcl-2, a cellular anti-apoptotic protein. BHRF1 has been shown to protect cells from apoptosis induced by numerous external stimuli. Nasopharyngeal carcinoma is an epithelial cancer associated closely with EBV infection. Specific proteins that might interact with and modulate the BHRF1 anti-apoptotic activity in normal epithelial cells are of interest. Therefore, a cDNA library derived from normal human foreskin keratinocytes was screened by the yeast two-hybrid system and a cellular gene encoding human vaccinia virus B1R kinase-related kinase 2 (VRK2) was isolated. Interaction between the cellular VRK2 and viral BHRF1 proteins was further demonstrated by glutathione S-transferase pull-down assays, confocal laser-scanning microscopy and co-immunoprecipitation. Analyses of VRK2-deletion mutants revealed that a 108 aa fragment at the C terminus was important for VRK2 to interact with BHRF1. For BHRF1, aa 1–18 and 89–142 were crucial in interacting with VRK2 and these two regions are counterparts of Bcl-2 homology domains 4 and 1. Overexpressed VRK2 alone showed a modest effect in anti-apoptosis and appeared to enhance cell survival in the presence of BHRF1. However, this enhancement was not observed when VRK2 was co-expressed with Bcl-2. The results indicate that human VRK2 interacts specifically with EBV BHRF1 and that the interaction is involved in protecting cells from apoptosis.
-
-
-
Epstein–Barr virus nuclear antigen 3A contains six nuclear-localization signals
More LessThe Epstein–Barr nuclear antigen 3A (EBNA3A) is one of only six viral proteins essential for Epstein–Barr virus-induced transformation of primary human B cells in vitro. Viral proteins such as EBNA3A are able to interact with cellular proteins, manipulating various biochemical and signalling pathways to initiate and maintain the transformed state of infected cells. EBNA3A has been reported to have one nuclear-localization signal and is targeted to the nucleus during transformation, where it associates with components of the nuclear matrix. By using enhanced green fluorescent protein-tagged deletion mutants of EBNA3A in combination with site-directed mutagenesis, an additional five functional nuclear-localization signals have been identified in the EBNA3A protein. Two of these (aa 63–66 and 375–381) were computer-predicted, whilst the remaining three (aa 394–398, 573–578 and 598–603) were defined functionally in this study.
-
-
-
Analysis of Epstein–Barr virus latent gene expression in endemic Burkitt's lymphoma and nasopharyngeal carcinoma tumour cells by using quantitative real-time PCR assays
Studies of Epstein–Barr virus (EBV)-positive cell lines have identified several forms of virus latency, but the patterns of virus gene expression in EBV-positive tumour cells appear more variable. However, it is unclear to what extent these differences merely reflect the increased sensitivities of different detection methods. Here, the design and validation of novel real-time RT-PCR assays to quantify relative levels of EBV transcripts are described. When the new assays were used to screen a collection of endemic Burkitt's lymphoma tumours, abundant Qp-driven EBNA1 expression was found, whereas the other latent transcripts (with the exception of LMP2A) were either absent or detectable only at trace levels. Analysis of 12 nasopharyngeal carcinoma biopsies revealed significant levels of EBNA1 and LMP2A transcripts in almost every case but, in contrast to previous reports, LMP1 expression was undetectable. These new quantitative assays may help to provide a clearer picture of EBV gene expression in tumour material.
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)