1887

Abstract

Flavivirus membrane fusion is mediated by a class II viral fusion protein, the major envelope protein E, and the fusion process is extremely fast and efficient. Understanding of the underlying mechanisms has been advanced significantly by the determination of E protein structures in their pre- and post-fusion conformations and by the elucidation of the quarternary organization of E proteins in the viral envelope. In this review, these structural data are discussed in the context of functional and biochemical analyses of the flavivirus fusion mechanism and its characteristics are compared with those of other class II- and class I-driven fusion processes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82210-0
2006-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/2755.html?itemId=/content/journal/jgv/10.1099/vir.0.82210-0&mimeType=html&fmt=ahah

References

  1. Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W., Kunz, C. & Heinz, F. X. ( 1995; ). Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol 69, 695–700.
    [Google Scholar]
  2. Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W. & Heinz, F. X. ( 2001; ). Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol 75, 4268–4275.[CrossRef]
    [Google Scholar]
  3. Andersson, H., Barth, B.-U., Ekström, M. & Garoff, H. ( 1997; ). Oligomerization-dependent folding of the membrane fusion protein of Semliki Forest virus. J Virol 71, 9654–9663.
    [Google Scholar]
  4. Bressanelli, S., Stiasny, K., Allison, S. L., Stura, E. A., Duquerroy, S., Lescar, J., Heinz, F. X. & Rey, F. A. ( 2004; ). Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23, 728–738.[CrossRef]
    [Google Scholar]
  5. Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. ( 1994; ). Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43.[CrossRef]
    [Google Scholar]
  6. Burke, D. S. & Monath, T. P. ( 2001; ). Flaviviruses. In Fields Virology, 4th edn, pp. 1043–1125. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia, PA: Lippincott Williams & Wilkins.
  7. Carr, C. M., Chaudhry, C. & Kim, P. S. ( 1997; ). Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci U S A 94, 14306–14313.[CrossRef]
    [Google Scholar]
  8. Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P. & Cunningham, J. M. ( 2005; ). Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308, 1643–1645.[CrossRef]
    [Google Scholar]
  9. Chanel-Vos, C. & Kielian, M. ( 2004; ). A conserved histidine in the ij loop of the Semliki Forest virus E1 protein plays an important role in membrane fusion. J Virol 78, 13543–13552.[CrossRef]
    [Google Scholar]
  10. Chen, E. H. & Olson, E. N. ( 2005; ). Unveiling the mechanisms of cell-cell fusion. Science 308, 369–373.[CrossRef]
    [Google Scholar]
  11. Chen, Y., Maguire, T., Hileman, R. E., Fromm, J. R., Esko, J. D., Linhardt, R. J. & Marks, R. M. ( 1997; ). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3, 866–871.[CrossRef]
    [Google Scholar]
  12. Chernomordik, L. V. & Kozlov, M. M. ( 2005; ). Membrane hemifusion: crossing a chasm in two leaps. Cell 123, 375–382.[CrossRef]
    [Google Scholar]
  13. Corver, J., Ortiz, A., Allison, S. L., Schalich, J., Heinz, F. X. & Wilschut, J. ( 2000; ). Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system. Virology 269, 37–46.[CrossRef]
    [Google Scholar]
  14. Crill, W. D. & Roehrig, J. T. ( 2001; ). Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 75, 7769–7773.[CrossRef]
    [Google Scholar]
  15. Davis, C. W., Nguyen, H.-Y., Hanna, S. L., Sánchez, M. D., Doms, R. W. & Pierson, T. C. ( 2006; ). West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80, 1290–1301.[CrossRef]
    [Google Scholar]
  16. DeLano, W. L. ( 2002; ). The PyMOL molecular graphics system. San Carlos, CA: DeLano Scientific.
  17. Desprès, P., Frenkiel, M.-P. & Deubel, V. ( 1993; ). Differences between cell membrane fusion activities of two dengue type-1 isolates reflect modifications of viral structure. Virology 196, 209–219.[CrossRef]
    [Google Scholar]
  18. Earp, L. J., Delos, S. E., Park, H. E. & White, J. M. ( 2005; ). The many mechanisms of viral membrane fusion proteins. Curr Top Microbiol Immunol 285, 25–66.
    [Google Scholar]
  19. Elshuber, S., Allison, S. L., Heinz, F. X. & Mandl, C. W. ( 2003; ). Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J Gen Virol 84, 183–191.[CrossRef]
    [Google Scholar]
  20. Gibbons, D. L., Ahn, A., Chatterjee, P. K. & Kielian, M. ( 2000; ). Formation and characterization of the trimeric form of the fusion protein of Semliki Forest virus. J Virol 74, 7772–7780.[CrossRef]
    [Google Scholar]
  21. Gibbons, D. L., Reilly, B., Ahn, A., Vaney, M.-C., Vigouroux, A., Rey, F. A. & Kielian, M. ( 2004a; ). Purification and crystallization reveal two types of interactions of the fusion protein homotrimer of Semliki Forest virus. J Virol 78, 3514–3523.[CrossRef]
    [Google Scholar]
  22. Gibbons, D. L., Vaney, M.-C., Roussel, A., Vigouroux, A., Reilly, B., Lepault, J., Kielian, M. & Rey, F. A. ( 2004b; ). Conformational change and protein–protein interactions of the fusion protein of Semliki Forest virus. Nature 427, 320–325.[CrossRef]
    [Google Scholar]
  23. Gollins, S. W. & Porterfield, J. S. ( 1986; ). pH-dependent fusion between the flavivirus West Nile and liposomal model membranes. J Gen Virol 67, 157–166.[CrossRef]
    [Google Scholar]
  24. Gubler, D. J. ( 2001; ). Human arbovirus infections worldwide. Ann N Y Acad Sci 951, 13–24.
    [Google Scholar]
  25. Guirakhoo, F., Heinz, F. X., Mandl, C. W., Holzmann, H. & Kunz, C. ( 1991; ). Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J Gen Virol 72, 1323–1329.[CrossRef]
    [Google Scholar]
  26. Guirakhoo, F., Hunt, A. R., Lewis, J. G. & Roehrig, J. T. ( 1993; ). Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology 194, 219–223.[CrossRef]
    [Google Scholar]
  27. Harrison, S. C. ( 2005; ). Mechanism of membrane fusion by viral envelope proteins. Adv Virus Res 64, 231–261.
    [Google Scholar]
  28. Heinz, F. X. & Allison, S. L. ( 2000; ). Structures and mechanisms in flavivirus fusion. Adv Virus Res 55, 231–269.
    [Google Scholar]
  29. Heinz, F. X. & Allison, S. L. ( 2003; ). Flavivirus structure and membrane fusion. Adv Virus Res 59, 63–97.
    [Google Scholar]
  30. Heinz, F. X., Stiasny, K., Püschner-Auer, G., Holzmann, H., Allison, S. L., Mandl, C. W. & Kunz, C. ( 1994; ). Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology 198, 109–117.[CrossRef]
    [Google Scholar]
  31. Heinz, F. X., Collett, M. S., Purcell, R. H., Gould, E. A., Howard, C. R., Houghton, M., Moormann, R. J. M., Rice, C. M. & Thiel, H.-J. ( 2000; ). Family Flaviviridae. In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses, pp. 859–878. Edited by M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle & R. B. Wickner. San Diego: Academic Press.
  32. Huang, Q., Opitz, R., Knapp, E.-W. & Herrmann, A. ( 2002; ). Protonation and stability of the globular domain of influenza virus hemagglutinin. Biophys J 82, 1050–1058.[CrossRef]
    [Google Scholar]
  33. Hung, J.-J., Hsieh, M.-T., Young, M.-J., Kao, C.-L., King, C.-C. & Chang, W. ( 2004; ). An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol 78, 378–388.[CrossRef]
    [Google Scholar]
  34. Jardetzky, T. S. & Lamb, R. A. ( 2004; ). Virology: a class act. Nature 427, 307–308.[CrossRef]
    [Google Scholar]
  35. Kampmann, T., Yennamalli, R., Stoerner, M., Kobe, B. & Young, P. ( 2005; ). Development of antiviral drugs targeting the flavivirus fusion mechanism. In Abstracts of the XIII International Congress of Virology, p. 8, abstract 40-V-43. Washington, DC: American Society for Microbiology.
  36. Kielian, M. ( 2006; ). Class II virus membrane fusion proteins. Virology 344, 38–47.[CrossRef]
    [Google Scholar]
  37. Kielian, M. & Rey, F. A. ( 2006; ). Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4, 67–76.[CrossRef]
    [Google Scholar]
  38. Kielian, M., Chatterjee, P. K., Gibbons, D. L. & Lu, Y. E. ( 2000; ). Specific roles for lipids in virus fusion and exit. Examples from the alphaviruses. Subcell Biochem 34, 409–455.
    [Google Scholar]
  39. Klenk, H. D. & Garten, W. ( 1994; ). Host cell proteases controlling virus pathogenicity. Trends Microbiol 2, 39–43.[CrossRef]
    [Google Scholar]
  40. Klimjack, M. R., Jeffrey, S. & Kielian, M. ( 1994; ). Membrane and protein interactions of a soluble form of the Semliki Forest virus fusion protein. J Virol 68, 6940–6946.
    [Google Scholar]
  41. Kroschewski, H., Allison, S. L., Heinz, F. X. & Mandl, C. W. ( 2003; ). Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. Virology 308, 92–100.[CrossRef]
    [Google Scholar]
  42. Kuhn, R. J., Zhang, W., Rossmann, M. G. & 9 other authors ( 2002; ). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725.[CrossRef]
    [Google Scholar]
  43. Law, M., Carter, G. C., Roberts, K. L., Hollinshead, M. & Smith, G. L. ( 2006; ). Ligand-induced and nonfusogenic dissolution of a viral membrane. Proc Natl Acad Sci U S A 103, 5989–5994.[CrossRef]
    [Google Scholar]
  44. Lee, E. & Lobigs, M. ( 2002; ). Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol 76, 4901–4911.[CrossRef]
    [Google Scholar]
  45. Lescar, J., Roussel, A., Wien, M. W., Navaza, J., Fuller, S. D., Wengler, G., Wengler, G. & Rey, F. A. ( 2001; ). The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137–148.[CrossRef]
    [Google Scholar]
  46. Lindenbach, B. D. & Rice, C. M. ( 2001; ). Flaviviridae: the viruses and their replication. In Fields Virology, 4th edn, pp. 991–1041. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia, PA: Lippincott Williams & Wilkins.
  47. Lorenz, I. C., Allison, S. L., Heinz, F. X. & Helenius, A. ( 2002; ). Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol 76, 5480–5491.[CrossRef]
    [Google Scholar]
  48. Mackenzie, J. M. & Westaway, E. G. ( 2001; ). Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol 75, 10787–10799.[CrossRef]
    [Google Scholar]
  49. Mackenzie, J. S., Gubler, D. J. & Petersen, L. R. ( 2004; ). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10, S98–S109.[CrossRef]
    [Google Scholar]
  50. Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M. & Taguchi, F. ( 2005; ). Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci U S A 102, 12543–12547.[CrossRef]
    [Google Scholar]
  51. McMinn, P. C., Weir, R. C. & Dalgarno, L. ( 1996; ). A mouse-attenuated envelope protein variant of Murray Valley encephalitis virus with altered fusion activity. J Gen Virol 77, 2085–2088.[CrossRef]
    [Google Scholar]
  52. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2003; ). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100, 6986–6991.[CrossRef]
    [Google Scholar]
  53. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2004; ). Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319.[CrossRef]
    [Google Scholar]
  54. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2005; ). Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79, 1223–1231.[CrossRef]
    [Google Scholar]
  55. Moss, B. ( 2006; ). Poxvirus entry and membrane fusion. Virology 344, 48–54.[CrossRef]
    [Google Scholar]
  56. Moulard, M. & Decroly, E. ( 2000; ). Maturation of HIV envelope glycoprotein precursors by cellular endoproteases. Biochim Biophys Acta 1469, 121–132.[CrossRef]
    [Google Scholar]
  57. Mukhopadhyay, S., Kim, B.-S., Chipman, P. R., Rossmann, M. G. & Kuhn, R. J. ( 2003; ). Structure of West Nile virus. Science 302, 248.[CrossRef]
    [Google Scholar]
  58. Mukhopadhyay, S., Kuhn, R. J. & Rossmann, M. G. ( 2005; ). A structural perspective of the Flavivirus life cycle. Nat Rev Microbiol 3, 13–22.[CrossRef]
    [Google Scholar]
  59. Mukhopadhyay, S., Zhang, W., Gabler, S., Chipman, P. R., Strauss, E. G., Strauss, J. H., Baker, T. S., Kuhn, R. J. & Rossmann, M. G. ( 2006; ). Mapping the structure and function of the E1 and E2 glycoproteins in alphaviruses. Structure 14, 63–73.[CrossRef]
    [Google Scholar]
  60. Navarro-Sanchez, E., Altmeyer, R., Amara, A., Schwartz, O., Fieschi, F., Virelizier, J.-L., Arenzana-Seisdedos, F. & Desprès, P. ( 2003; ). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4, 723–728.[CrossRef]
    [Google Scholar]
  61. Ni, H. & Barrett, A. D. T. ( 1998; ). Attenuation of Japanese encephalitis virus by selection of its mouse brain membrane receptor preparation escape variants. Virology 241, 30–36.[CrossRef]
    [Google Scholar]
  62. Paterson, R. G., Russell, C. J. & Lamb, R. A. ( 2000; ). Fusion protein of the paramyxovirus SV5: destabilizing and stabilizing mutants of fusion activation. Virology 270, 17–30.[CrossRef]
    [Google Scholar]
  63. Phalen, T. & Kielian, M. ( 1991; ). Cholesterol is required for infection by Semliki Forest virus. J Cell Biol 112, 615–623.[CrossRef]
    [Google Scholar]
  64. Pokidysheva, E., Zhang, Y., Battisti, A. J. & 7 other authors ( 2006; ). Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124, 485–493.[CrossRef]
    [Google Scholar]
  65. Qiu, Z., Hingley, S. T., Simmons, G., Yu, C., Das Sarma, J., Bates, P. & Weiss, S. R. ( 2006; ). Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry. J Virol 80, 5768–5776.[CrossRef]
    [Google Scholar]
  66. Randolph, V. B. & Stollar, V. ( 1990; ). Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. J Gen Virol 71, 1845–1850.[CrossRef]
    [Google Scholar]
  67. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. ( 1995; ). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298.[CrossRef]
    [Google Scholar]
  68. Roussel, A., Lescar, J., Vaney, M.-C., Wengler, G., Wengler, G. & Rey, F. A. ( 2006; ). Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. Structure 14, 75–86.[CrossRef]
    [Google Scholar]
  69. Salminen, A., Wahlberg, J. M., Lobigs, M., Liljeström, P. & Garoff, H. ( 1992; ). Membrane fusion process of Semliki Forest virus. II: Cleavage-dependent reorganization of the spike protein complex controls virus entry. J Cell Biol 116, 349–357.[CrossRef]
    [Google Scholar]
  70. Sankaran, D., Lau, L. C. & Ng, M. L. ( 1997; ). Interaction of Kunjin virus with octyl-d-glucoside extracted Vero cell plasma membrane. J Virol Methods 63, 167–173.[CrossRef]
    [Google Scholar]
  71. Schibli, D. J. & Weissenhorn, W. ( 2004; ). Class I and class II viral fusion protein structures reveal similar principles in membrane fusion. Mol Membr Biol 21, 361–371.[CrossRef]
    [Google Scholar]
  72. Schlesinger, S. & Schlesinger, M. J. ( 2001; ). Togaviridae: the viruses and their replication. In Fields Virology, 4th edn, pp. 895–916. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia, PA: Lippincott Williams & Wilkins.
  73. Schornberg, K., Matsuyama, S., Kabsch, K., Delos, S., Bouton, A. & White, J. ( 2006; ). Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol 80, 4174–4178.[CrossRef]
    [Google Scholar]
  74. Simmons, G., Gosalia, D. N., Rennekamp, A. J., Reeves, J. D., Diamond, S. L. & Bates, P. ( 2005; ). Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A 102, 11876–11881.[CrossRef]
    [Google Scholar]
  75. Skehel, J. J. & Wiley, D. C. ( 1998; ). Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871–874.[CrossRef]
    [Google Scholar]
  76. Skehel, J. J. & Wiley, D. C. ( 2000; ). Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69, 531–569.[CrossRef]
    [Google Scholar]
  77. Smith, T. J., Brandt, W. E., Swanson, J. L., McCown, J. M. & Buescher, E. L. ( 1970; ). Physical and biological properties of dengue-2 virus and associated antigens. J Virol 5, 524–532.
    [Google Scholar]
  78. Söllner, T. H. ( 2004; ). Intracellular and viral membrane fusion: a uniting mechanism. Curr Opin Cell Biol 16, 429–435.[CrossRef]
    [Google Scholar]
  79. Solomon, T. & Mallewa, M. ( 2001; ). Dengue and other emerging flaviviruses. J Infect 42, 104–115.[CrossRef]
    [Google Scholar]
  80. Spear, P. G., Manoj, S., Yoon, M., Jogger, C. R., Zago, A. & Myscofski, D. ( 2006; ). Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry. Virology 344, 17–24.[CrossRef]
    [Google Scholar]
  81. Stadler, K., Allison, S. L., Schalich, J. & Heinz, F. X. ( 1997; ). Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71, 8475–8481.
    [Google Scholar]
  82. Stiasny, K. & Heinz, F. X. ( 2004; ). Effect of membrane curvature-modifying lipids on membrane fusion by tick-borne encephalitis virus. J Virol 78, 8536–8542.[CrossRef]
    [Google Scholar]
  83. Stiasny, K., Allison, S. L., Mandl, C. W. & Heinz, F. X. ( 2001; ). Role of metastability and acidic pH in membrane fusion by tick-borne encephalitis virus. J Virol 75, 7392–7398.[CrossRef]
    [Google Scholar]
  84. Stiasny, K., Allison, S. L., Schalich, J. & Heinz, F. X. ( 2002; ). Membrane interactions of the tick-borne encephalitis virus fusion protein E at low pH. J Virol 76, 3784–3790.[CrossRef]
    [Google Scholar]
  85. Stiasny, K., Koessl, C. & Heinz, F. X. ( 2003; ). Involvement of lipids in different steps of the flavivirus fusion mechanism. J Virol 77, 7856–7862.[CrossRef]
    [Google Scholar]
  86. Stiasny, K., Bressanelli, S., Lepault, J., Rey, F. A. & Heinz, F. X. ( 2004; ). Characterization of a membrane-associated trimeric low-pH-induced form of the class II viral fusion protein E from tick-borne encephalitis virus and its crystallization. J Virol 78, 3178–3183.[CrossRef]
    [Google Scholar]
  87. Stollar, V. ( 1969; ). Studies on the nature of dengue viruses. IV. The structural proteins of type 2 dengue virus. Virology 39, 426–438.[CrossRef]
    [Google Scholar]
  88. Suksanpaisan, L. & Smith, D. R. ( 2003; ). Analysis of saturation binding and saturation infection for dengue serotypes 1 and 2 in liver cells. Intervirology 46, 50–55.[CrossRef]
    [Google Scholar]
  89. Summers, P. L., Cohen, W. H., Ruiz, M. M., Hase, T. & Eckels, K. H. ( 1989; ). Flaviviruses can mediate fusion from without in Aedes albopictus mosquito cell cultures. Virus Res 12, 383–392.[CrossRef]
    [Google Scholar]
  90. Tassaneetrithep, B., Burgess, T. H., Granelli-Piperno, A. & 10 other authors ( 2003; ). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197, 823–829.[CrossRef]
    [Google Scholar]
  91. Ueba, N. & Kimura, T. ( 1977; ). Polykaryocytosis induced by certain arboviruses in monolayers of BHK-21-528 cells. J Gen Virol 34, 369–373.[CrossRef]
    [Google Scholar]
  92. Wahlberg, J. M., Bron, R., Wilschut, J. & Garoff, H. ( 1992; ). Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J Virol 66, 7309–7318.
    [Google Scholar]
  93. Wallin, M., Ekström, M. & Garoff, H. ( 2005; ). The fusion-controlling disulfide bond isomerase in retrovirus Env is triggered by protein destabilization. J Virol 79, 1678–1685.[CrossRef]
    [Google Scholar]
  94. Wengler, G. & Wengler, G. ( 1989; ). Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J Virol 63, 2521–2526.
    [Google Scholar]
  95. Wharton, S. A., Skehel, J. J. & Wiley, D. C. ( 2000; ). Temperature dependence of fusion by Sendai virus. Virology 271, 71–78.[CrossRef]
    [Google Scholar]
  96. Wilson, I. A., Skehel, J. J. & Wiley, D. C. ( 1981; ). Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366–373.[CrossRef]
    [Google Scholar]
  97. Yin, H.-S., Paterson, R. G., Wen, X., Lamb, R. A. & Jardetzky, T. S. ( 2005; ). Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc Natl Acad Sci U S A 102, 9288–9293.[CrossRef]
    [Google Scholar]
  98. Yin, H.-S., Wen, X., Paterson, R. G., Lamb, R. A. & Jardetzky, T. S. ( 2006; ). Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 439, 38–44.[CrossRef]
    [Google Scholar]
  99. Zhang, X. & Kielian, M. ( 2004; ). Mutations that promote furin-independent growth of Semliki Forest virus affect p62–E1 interactions and membrane fusion. Virology 327, 287–296.[CrossRef]
    [Google Scholar]
  100. Zhang, W., Mukhopadhyay, S., Pletnev, S. V., Baker, T. S., Kuhn, R. J. & Rossmann, M. G. ( 2002; ). Placement of the structural proteins in Sindbis virus. J Virol 76, 11645–11658.[CrossRef]
    [Google Scholar]
  101. Zhang, W., Chipman, P. R., Corver, J. & 7 other authors ( 2003a; ). Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10, 907–912.[CrossRef]
    [Google Scholar]
  102. Zhang, X., Fugère, M., Day, R. & Kielian, M. ( 2003b; ). Furin processing and proteolytic activation of Semliki Forest virus. J Virol 77, 2981–2989.[CrossRef]
    [Google Scholar]
  103. Zhang, Y., Corver, J., Chipman, P. R. & 7 other authors ( 2003c; ). Structures of immature flavivirus particles. EMBO J 22, 2604–2613.[CrossRef]
    [Google Scholar]
  104. Zhang, Y., Zhang, W., Ogata, S., Clements, D., Strauss, J. H., Baker, T. S., Kuhn, R. J. & Rossmann, M. G. ( 2004; ). Conformational changes of the flavivirus E glycoprotein. Structure 12, 1607–1618.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82210-0
Loading
/content/journal/jgv/10.1099/vir.0.82210-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error