1887

Abstract

The mechanism of herpes simplex virus type 1 (HSV-1) penetration into the brain and its predilection to infect certain neuronal regions is unknown. In order to study HSV-1 neurotropism, an system of mice organotypic brain slices was established and the tissue was infected with HSV-1 vectors. Neonate tissues showed restricted infection confined to leptomeningeal, periventricular and cortical brain regions. The hippocampus was the primary parenchymatous structure that was also infected. Infection was localized to early progenitor and ependymal cells. Increasing viral inoculum increased the intensity and enlarged the infected territory, but the distinctive pattern of infection was maintained and differed from that observed with adenovirus and . Neonate brain tissues were much more permissive for HSV-1 infection than adult mouse brain tissues. Taken together, these results indicate a complex interaction of HSV-1 with different brain-cell types and provide a useful vehicle to elucidate the mechanisms of viral neurotropism.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81850-0
2006-10-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/2827.html?itemId=/content/journal/jgv/10.1099/vir.0.81850-0&mimeType=html&fmt=ahah

References

  1. Bahr, B. A., Neve, R. L., Sharp, J., Geller, A. I. & Lynch, G. ( 1994; ). Rapid and stable gene expression in hippocampal slice cultures from a defective HSV-1 vector. Brain Res Mol Brain Res 26, 277–285.[CrossRef]
    [Google Scholar]
  2. Banin, E., Obolensky, A., Piontek, E., Falk, H., Pikarsky, E., Pe'er, J., Panet, A. & Chowers, I. ( 2003; ). Gene delivery by viral vectors in primary cultures of lacrimal gland tissue. Invest Ophthalmol Vis Sci 44, 1529–1533.[CrossRef]
    [Google Scholar]
  3. Ben-Hur, T., Hadar, J., Shtram, Y., Gilden, D. H. & Becker, Y. ( 1983; ). Neurovirulence of herpes simplex virus type 1 depends on age in mice and thymidine kinase expression. Arch Virol 78, 303–308.[CrossRef]
    [Google Scholar]
  4. Ben-Hur, T., Rosen-Wölff, A., Lamade, W., Darai, G. & Becker, Y. ( 1988; ). HSV-1 DNA sequence determining intraperitoneal pathogenicity in mice is required for transcription of viral immediate-early genes in macrophages. Virology 163, 397–404.[CrossRef]
    [Google Scholar]
  5. Bergold, P. J., Casaccia-Bonnefil, P., Zeng, X.-L. & Federoff, H. J. ( 1993; ). Transsynaptic neuronal loss induced in hippocampal slice cultures by a herpes simplex virus vector expressing the GluR6 subunit of the kainate receptor. Proc Natl Acad Sci U S A 90, 6165–6169.[CrossRef]
    [Google Scholar]
  6. Bergstrom, T., Conradi, N., Hansson, E., Liljeroth, A. & Vahlne, A. ( 1994; ). Resistance of rat CNS to brain stem infection with herpes simplex virus type 1. Acta Neuropathol 87, 398–404.[CrossRef]
    [Google Scholar]
  7. Brill-Almon, E., Stern, B., Afik, D. & 8 other authors ( 2005; ). Ex vivo transduction of human dermal tissue structures for autologous implantation production and delivery of therapeutic proteins. Mol Ther 12, 274–282.[CrossRef]
    [Google Scholar]
  8. Campadelli-Fiume, G., Cocchi, F., Menotti, L. & Lopez, M. ( 2000; ). The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol 10, 305–319.[CrossRef]
    [Google Scholar]
  9. Casaccia-Bonnefil, P., Benedikz, E., Shen, H., Stelzer, A., Edelstein, D., Geschwind, M., Brownlee, M., Federoff, H. J. & Bergold, P. J. ( 1993; ). Localized gene transfer into organotypic hippocampal slice cultures and acute hippocampal slices. J Neurosci Methods 50, 341–351.[CrossRef]
    [Google Scholar]
  10. Chakrabarti, S., Brechling, K. & Moss, B. ( 1985; ). Vaccinia virus expression vector: coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol 5, 3403–3409.
    [Google Scholar]
  11. Chen, S.-F., Huang, C.-C., Wu, H.-M., Chen, S.-H., Liang, Y.-C. & Hsu, K.-S. ( 2004; ). Seizure, neuron loss, and mossy fiber sprouting in herpes simplex virus type 1-infected organotypic hippocampal cultures. Epilepsia 45, 322–332.[CrossRef]
    [Google Scholar]
  12. Chrisp, C. E., Sunstrum, J. C., Averill, D. R., Jr, Levine, M. & Glorioso, J. C. ( 1989; ). Characterization of encephalitis in adult mice induced by intracerebral inoculation of herpes simplex virus type 1 (KOS) and comparison with mutants showing decreased virulence. Lab Invest 60, 822–830.
    [Google Scholar]
  13. Connelly, C. A., Chen, L. C. & Colquhoun, S. D. ( 2000; ). Metabolic activity of cultured rat brainstem, hippocampal and spinal cord slices. J Neurosci Methods 99, 1–7.[CrossRef]
    [Google Scholar]
  14. Corner, M. A., Baker, R. E., van Pelt, J. & Wolters, P. S. ( 2005; ). Compensatory physiological responses to chronic blockade of amino acid receptors during early development in spontaneously active organotypic cerebral cortex explants cultured in vitro. Prog Brain Res 147, 231–248.
    [Google Scholar]
  15. Crain, S. M. ( 1998; ). Development of specific synaptic network functions in organotypic central nervous system (CNS) cultures: implications for transplantation of CNS neural cells in vivo. Methods 16, 228–238.[CrossRef]
    [Google Scholar]
  16. Davar, G., Kramer, M. F., Garber, D. & 8 other authors ( 1994; ). Comparative efficacy of expression of genes delivered to mouse sensory neurons with herpes virus vectors. J Comp Neurol 339, 3–11.[CrossRef]
    [Google Scholar]
  17. Davido, D. J., von Zagorski, W. F., Maul, G. G. & Schaffer, P. A. ( 2003; ). The differential requirement for cyclin-dependent kinase activities distinguishes two functions of herpes simplex virus type 1 ICP0. J Virol 77, 12603–12616.[CrossRef]
    [Google Scholar]
  18. Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A. & Gage, F. H. ( 1998; ). Neurogenesis in the adult human hippocampus. Nat Med 4, 1313–1317.[CrossRef]
    [Google Scholar]
  19. Frederiksen, K. & McKay, R. D. G. ( 1988; ). Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. J Neurosci 8, 1144–1151.
    [Google Scholar]
  20. Gage, F. H. ( 2002; ). Neurogenesis in the adult brain. J Neurosci 22, 612–613.
    [Google Scholar]
  21. Gordon, B., Selnes, O. A., Hart, J., Jr, Hanley, D. F. & Whitley, R. J. ( 1990; ). Long-term cognitive sequelae of acyclovir-treated herpes simplex encephalitis. Arch Neurol 47, 646–647.[CrossRef]
    [Google Scholar]
  22. Gosztonyi, G. & Koprowski, H. ( 2001; ). The concept of neurotropism and selective vulnerability (“pathoclisis”) in virus infections of the nervous system – a historical overview. Curr Top Microbiol Immunol 253, 1–13.
    [Google Scholar]
  23. Hagihara, K., Watanabe, K., Chun, J. & Yamaguchi, Y. ( 2000; ). Glypican-4 is an FGF2-binding heparan sulfate proteoglycan expressed in neural precursor cells. Dev Dyn 219, 353–367.[CrossRef]
    [Google Scholar]
  24. Hasson, E., Slovatizky, Y., Shimoni, Y., Falk, H., Panet, A. & Mitrani, E. ( 2005; ). Solid tissues can be manipulated ex vivo and used as vehicles for gene therapy. J Gene Med 7, 926–935.[CrossRef]
    [Google Scholar]
  25. Havenga, M. J. E., Lemckert, A. A. C., Ophorst, O. J. A. E. & 13 other authors ( 2002; ). Exploiting the natural diversity in adenovirus tropism for therapy and prevention of disease. J Virol 76, 4612–4620.[CrossRef]
    [Google Scholar]
  26. Jensen, H. L. & Norrild, B. ( 2000; ). The effects of cell passages on the cell morphology and the outcome of herpes simplex virus type 1 infection. J Virol Methods 84, 139–152.[CrossRef]
    [Google Scholar]
  27. Kamada, M., Li, R.-Y., Hashimoto, M., Kakuda, M., Okada, H., Koyanagi, Y., Ishizuka, T. & Yawo, H. ( 2004; ). Intrinsic and spontaneous neurogenesis in the postnatal slice culture of rat hippocampus. Eur J Neurosci 20, 2499–2508.[CrossRef]
    [Google Scholar]
  28. Katsetos, C. D., Herman, M. M. & Mörk, S. J. ( 2003; ). Class III β-tubulin in human development and cancer. Cell Motil Cytoskeleton 55, 77–96.[CrossRef]
    [Google Scholar]
  29. Kawasaki, H., Kosugi, I., Arai, Y. & Tsutsui, Y. ( 2002; ). The amount of immature glial cells in organotypic brain slices determines the susceptibility to murine cytomegalovirus infection. Lab Invest 82, 1347–1358.[CrossRef]
    [Google Scholar]
  30. Kemp, L. M., Dent, C. L. & Latchman, D. S. ( 1990; ). Octamer motif mediates transcriptional repression of HSV immediate-early genes and octamer-containing cellular promoters in neuronal cells. Neuron 4, 215–222.[CrossRef]
    [Google Scholar]
  31. Kennedy, P. G. & Steiner, I. ( 1993; ). The use of herpes simplex virus vectors for gene therapy in neurological diseases. Q J Med 86, 697–702.
    [Google Scholar]
  32. Kennedy, P. G., Clements, G. B. & Brown, S. M. ( 1983; ). Differential susceptibility of human neural cell types in culture to infection with herpes simplex virus. Brain 106, 101–119.[CrossRef]
    [Google Scholar]
  33. Kern, E. R., Richards, J. T., Glasgow, L. A., Overall, J. C., Jr & de Miranda, P. ( 1982; ). Optimal treatment of herpes simplex virus encephalitis in mice with oral acyclovir. Am J Med 73, 125–131.
    [Google Scholar]
  34. Kristensson, K. ( 1976; ). Experimental herpes simplex virus infection in the immature mouse brain. Acta Neuropathol 35, 343–351.
    [Google Scholar]
  35. Latchman, D. S. ( 2003; ). Herpes simplex virus vectors for Parkinson's disease. Int Rev Neurobiol 55, 223–241.
    [Google Scholar]
  36. Liu, Q., Xie, F., Siedlak, S. L., Nunomura, A., Honda, K., Moreira, P. I., Zhua, X., Smith, M. A. & Perry, G. ( 2004; ). Neurofilament proteins in neurodegenerative diseases. Cell Mol Life Sci 61, 3057–3075.[CrossRef]
    [Google Scholar]
  37. Lopez, C. ( 1975; ). Genetics of natural resistance to herpesvirus infections in mice. Nature 258, 152–153.[CrossRef]
    [Google Scholar]
  38. Mador, N., Panet, A., Latchman, D. & Steiner, I. ( 1995; ). Expression and splicing of the latency-associated transcripts of herpes simplex virus type 1 in neuronal and non-neuronal cell lines. J Biochem (Tokyo) 117, 1288–1297.
    [Google Scholar]
  39. Mador, N., Goldenberg, D., Cohen, O., Panet, A. & Steiner, I. ( 1998; ). Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate-early gene mRNA levels in a neuronal cell line. J Virol 72, 5067–5075.
    [Google Scholar]
  40. Maidment, N. T., Tan, A. M., Bloom, D. C., Anton, B., Feldman, L. T. & Stevens, J. G. ( 1996; ). Expression of the lacZ reporter gene in the rat basal forebrain, hippocampus, and nigrostriatal pathway using a nonreplicating herpes simplex vector. Exp Neurol 139, 107–114.[CrossRef]
    [Google Scholar]
  41. Mao, H. & Rosenthal, K. S. ( 2003; ). Strain-dependent structural variants of herpes simplex virus type 1 ICP34.5 determine viral plaque size, efficiency of glycoprotein processing, and viral release and neuroinvasive disease potential. J Virol 77, 3409–3417.[CrossRef]
    [Google Scholar]
  42. Marsh, D. R., Dekaban, G. A., Tan, W., Strathdee, C. A. & Weaver, L. C. ( 2000; ). Herpes simplex viral and amplicon vector-mediated gene transfer into glia and neurons in organotypic spinal cord and dorsal root ganglion cultures. Mol Ther 1, 464–478.[CrossRef]
    [Google Scholar]
  43. Mayer, D., Fischer, H., Schneider, U., Heimrich, B. & Schwemmle, M. ( 2005; ). Borna disease virus replication in organotypic hippocampal slice cultures from rats results in selective damage of dentate granule cells. J Virol 79, 11716–11723.[CrossRef]
    [Google Scholar]
  44. Miller, R. R. & McDevitt, C. A. ( 1991; ). A quantitative microwell assay for chondrocyte cell adhesion. Anal Biochem 192, 380–383.[CrossRef]
    [Google Scholar]
  45. Nicholson, D. W., Ali, A., Thornberry, N. A. & 13 other authors ( 1995; ). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43.[CrossRef]
    [Google Scholar]
  46. Prevec, L., Christie, B. S., Laurie, K. E., Bailey, M. M., Graham, F. L. & Rosenthal, K. L. ( 1991; ). Immune response to HIV-1 gag antigens induced by recombinant adenovirus vectors in mice and rhesus macaque monkeys. J Acquir Immune Defic Syndr 4, 568–576.
    [Google Scholar]
  47. Raineteau, O., Rietschin, L., Gradwohl, G., Guillemot, F. & Gähwiler, B. H. ( 2004; ). Neurogenesis in hippocampal slice cultures. Mol Cell Neurosci 26, 241–250.[CrossRef]
    [Google Scholar]
  48. Reinhardt, B., Vaida, B., Voisard, R. & 7 other authors ( 2003; ). Human cytomegalovirus infection in human renal arteries in vitro. J Virol Methods 109, 1–9.[CrossRef]
    [Google Scholar]
  49. Sato, Y., Shiraishi, Y. & Furuichi, T. ( 2004; ). Cell specificity and efficiency of the Semliki Forest virus vector- and adenovirus vector-mediated gene expression in mouse cerebellum. J Neurosci Methods 137, 111–121.[CrossRef]
    [Google Scholar]
  50. Schang, L. M., Bantly, A. & Schaffer, P. A. ( 2002; ). Explant-induced reactivation of herpes simplex virus occurs in neurons expressing nuclear cdk2 and cdk4. J Virol 76, 7724–7735.[CrossRef]
    [Google Scholar]
  51. Schmutzhard, E. ( 2001; ). Viral infections of the CNS with special emphasis on herpes simplex infections. J Neurol 248, 469–477.[CrossRef]
    [Google Scholar]
  52. Schweighardt, B. & Atwood, W. J. ( 2001; ). Virus receptors in the human central nervous system. J Neurovirol 7, 187–195.[CrossRef]
    [Google Scholar]
  53. Shiraki, K., Yamamura, J., Kurokawa, M., Andoh, T., Sato, H., Yoshida, Y., Li, Z. H., Kamiyama, T. & Kageyama, S. ( 1998; ). A live non-neurovirulent herpes simplex virus vector expresses β-galactosidase in the nervous system of the Wistar and Sprague-Dawley strain rat for a prolonged period. Neurosci Lett 245, 69–72.[CrossRef]
    [Google Scholar]
  54. Spear, P. G. ( 2004; ). Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 6, 401–410.[CrossRef]
    [Google Scholar]
  55. Steiner, I. ( 2003; ). Herpes simplex viruses. In Clinical Neurovirology, pp. 109–129. Edited by A. Nath & J. R. Berger. New York: Marcel Dekker.
  56. Steiner, I. & Biran, I. ( 2002; ). Herpes simplex encephalitis. Curr Treat Options Infect Dis 4, 491–499.
    [Google Scholar]
  57. Steiner, I., Spivack, J. G., Lirette, R. P., Brown, S. M., MacLean, A. R., Subak-Sharpe, J. H. & Fraser, N. W. ( 1989; ). Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J 8, 505–511.
    [Google Scholar]
  58. Steiner, I., Spivack, J. G., Deshmane, S. L., Ace, C. I., Preston, C. M. & Fraser, N. W. ( 1990; ). A herpes simplex virus type 1 mutant containing a nontransinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. J Virol 64, 1630–1638.
    [Google Scholar]
  59. Stoppini, L., Buchs, P.-A. & Muller, D. ( 1991; ). A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37, 173–182.[CrossRef]
    [Google Scholar]
  60. Stoppini, L., Parisi, L., Oropesa, C. & Muller, D. ( 1997; ). Sprouting and functional recovery in co-cultures between old and young hippocampal organotypic slices. Neuroscience 80, 1127–1136.[CrossRef]
    [Google Scholar]
  61. Sundaresan, P., Hunter, W. D., Martuza, R. L. & Rabkin, S. D. ( 2000; ). Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation in mice. J Virol 74, 3832–3841.[CrossRef]
    [Google Scholar]
  62. Talanian, R. V., Quinlan, C., Trautz, S., Hackett, M. C., Mankovich, J. A., Banach, D., Ghayur, T., Brady, K. D. & Wong, W. W. ( 1997; ). Substrate specificities of caspase family proteases. J Biol Chem 272, 9677–9682.[CrossRef]
    [Google Scholar]
  63. Taylor, S. L. & Moffat, J. F. ( 2005; ). Replication of varicella-zoster virus in human skin organ culture. J Virol 79, 11501–11506.[CrossRef]
    [Google Scholar]
  64. Thomas, S. K., Gough, G., Latchman, D. S. & Coffin, R. S. ( 1999; ). Herpes simplex virus latency-associated transcript encodes a protein which greatly enhances virus growth, can compensate for deficiencies in immediate-early gene expression, and is likely to function during reactivation from virus latency. J Virol 73, 6618–6625.
    [Google Scholar]
  65. Thomas, H. C., Kapadia, R. D., Wells, G. I., Gresham, A. M., Sutton, D., Solleveld, H. A., Sarkar, S. K., Dillon, S. B. & Tal-Singer, R. ( 2001; ). Differences in pathogenicity of herpes simplex virus serotypes 1 and 2 may be observed by histopathology and high-resolution magnetic resonance imaging in a murine encephalitis model. J Neurovirol 7, 105–116.[CrossRef]
    [Google Scholar]
  66. Toni, N., Stoppini, L. & Muller, D. ( 1997; ). Staurosporine but not chelerythrine inhibits regeneration in hippocampal organotypic cultures. Synapse 27, 199–207.[CrossRef]
    [Google Scholar]
  67. Tyler, K. L. ( 2004; ). Herpes simplex virus infections of the central nervous system: encephalitis and meningitis, including Mollaret's. Herpes 11 (Suppl. 2), 57A–64A.
    [Google Scholar]
  68. van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D. & Gage, F. H. ( 2002; ). Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034.[CrossRef]
    [Google Scholar]
  69. Wheatley, S. C., Dent, C. L., Wood, J. N. & Latchman, D. S. ( 1991; ). A cellular factor binding to the TAATGARAT DNA sequence prevents the expression of the HSV immediate-early genes following infection of nonpermissive cell lines derived from dorsal root ganglion neurons. Exp Cell Res 194, 78–82.[CrossRef]
    [Google Scholar]
  70. Whitley, R. J. & Roizman, B. ( 2001; ). Herpes simplex virus infections. Lancet 357, 1513–1518.[CrossRef]
    [Google Scholar]
  71. Wiese, C., Rolletschek, A., Kania, G., Blyszczuk, P., Tarasov, K. V., Tarasova, Y., Wersto, R. P., Boheler, K. R. & Wobus, A. M. ( 2004; ). Nestin expression – a property of multi-lineage progenitor cells? Cell Mol Life Sci 61, 2510–2522.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81850-0
Loading
/content/journal/jgv/10.1099/vir.0.81850-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2827 – 2837

Pattern of HSV-1 infection of neonate rat brain slices. Brain sections were infected with HSV-(RSV-β-gal) (a, b) and HSV-(MuLV-β-gal) (c) at equal titres of 3×10 p.f.u. ml and X-Gal-stained after 18 h.



IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error