1887

Abstract

Recently, nitric oxide (NO) has been shown to suppress dengue virus (DENV) RNA and protein accumulation in infected cells. In this report, the potential target of the inhibitory effect of NO was studied at the molecular level. The NO donor, -nitroso--acetylpenicillamine (SNAP), showed an inhibitory effect on RNA accumulation at around 8–14 h post-infection, which corresponded to the step of viral RNA synthesis in the DENV life cycle. The activity of the viral replicase isolated from SNAP-treated DENV-2-infected cells was suppressed significantly compared with that of the negative-control -acetyl--penicillamine (NAP)-treated cells. Further investigations on the molecular target of NO action showed that the activity of recombinant DENV-2 NS5 in negative-strand RNA synthesis was affected in the presence of 5 mM SNAP in RNA-dependent RNA polymerase (RdRp) assays, whereas the RNA helicase activity of DENV-2 NS3 was not inhibited up to a concentration of 15 mM SNAP. These results suggest that the inhibitory effect of NO on DENV infection is partly via inhibition of the RdRp activity, which then downregulates viral RNA synthesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81880-0
2006-10-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/3003.html?itemId=/content/journal/jgv/10.1099/vir.0.81880-0&mimeType=html&fmt=ahah

References

  1. Ackermann, M. & Padmanabhan, R. ( 2001; ). De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276, 39926–39937.[CrossRef]
    [Google Scholar]
  2. Ali-Ahmad, D., Bonville, C. A., Rosenberg, H. F. & Domachowske, J. B. ( 2003; ). Replication of respiratory syncytial virus is inhibited in target cells generating nitric oxide in situ. Front Biosci 8, a48–a53.[CrossRef]
    [Google Scholar]
  3. Bartelma, G. & Padmanabhan, R. ( 2002; ). Expression, purification, and characterization of the RNA 5′-triphosphatase activity of dengue virus type 2 nonstructural protein 3. Virology 299, 122–132.[CrossRef]
    [Google Scholar]
  4. Benarroch, D., Selisko, B., Locatelli, G. A., Maga, G., Romette, J.-L. & Canard, B. ( 2004; ). The RNA helicase, nucleotide 5′-triphosphatase, and RNA 5′-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328, 208–218.[CrossRef]
    [Google Scholar]
  5. Bi, Z., Barna, M., Komatsu, T. & Reiss, C. S. ( 1995; ). Vesicular stomatitis virus infection of the central nervous system activates both innate and acquired immunity. J Virol 69, 6466–6472.
    [Google Scholar]
  6. Charnsilpa, W., Takhampunya, R., Endy, T. P., Mammen, M. P., Jr, Libraty, D. H. & Ubol, S. ( 2005; ). Nitric oxide radical suppresses replication of wild-type dengue 2 viruses in vitro. J Med Virol 77, 89–95.[CrossRef]
    [Google Scholar]
  7. Chen, Y.-C. & Wang, S.-Y. ( 2002; ). Activation of terminally differentiated human monocytes/macrophages by dengue virus: productive infection, hierarchical production of innate cytokines and chemokines, and the synergistic effect of lipopolysaccharide. J Virol 76, 9877–9887.[CrossRef]
    [Google Scholar]
  8. Chu, P. W. G. & Westaway, E. G. ( 1985; ). Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. Virology 140, 68–79.[CrossRef]
    [Google Scholar]
  9. Chu, P. W. G. & Westaway, E. G. ( 1987; ). Characterization of Kunjin virus RNA-dependent RNA polymerase: reinitiation of synthesis in vitro. Virology 157, 330–337.[CrossRef]
    [Google Scholar]
  10. Cleaves, G. R., Ryan, T. E. & Schlesinger, R. W. ( 1981; ). Identification and characterization of type 2 dengue virus replicative intermediate and replicative form RNAs. Virology 111, 73–83.[CrossRef]
    [Google Scholar]
  11. Egloff, M.-P., Benarroch, D., Selisko, B., Romette, J.-L. & Canard, B. ( 2002; ). An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21, 2757–2768.[CrossRef]
    [Google Scholar]
  12. Espina, L. M., Valero, N. J., Hernández, J. M. & Mosquera, J. A. ( 2003; ). Increased apoptosis and expression of tumor necrosis factor-α caused by infection of cultured human monocytes with dengue virus. Am J Trop Med Hyg 68, 48–53.
    [Google Scholar]
  13. García-Montalvo, B. M., Medina, F. & del Angel, R. M. ( 2004; ). La protein binds to NS5 and NS3 and to the 5′ and 3′ ends of Dengue 4 virus RNA. Virus Res 102, 141–150.[CrossRef]
    [Google Scholar]
  14. Guyatt, K. J., Westaway, E. G. & Khromykh, A. A. ( 2001; ). Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the flavivirus Kunjin. J Virol Methods 92, 37–44.[CrossRef]
    [Google Scholar]
  15. Harris, N., Buller, R. M. & Karupiah, G. ( 1995; ). Gamma interferon-induced, nitric oxide-mediated inhibition of vaccinia virus replication. J Virol 69, 910–915.
    [Google Scholar]
  16. Houng, H.-S. H., Chen, R. C.-M., Vaughn, D. W. & Kanesa-thasan, N. ( 2001; ). Development of a fluorogenic RT-PCR system for quantitative identification of dengue virus serotypes 1–4 using conserved and serotype-specific 3′ noncoding sequences. J Virol Methods 95, 19–32.[CrossRef]
    [Google Scholar]
  17. Huang, Y.-C. T., Li, Z., Brighton, L. E., Carson, J. L., Becker, S. & Soukup, J. M. ( 2005; ). 3-Nitrotyrosine attenuates respiratory syncytial virus infection in human bronchial epithelial cell line. Am J Physiol Lung Cell Mol Physiol 288, L988–L996.[CrossRef]
    [Google Scholar]
  18. Kapoor, M., Zhang, L., Ramachandra, M., Kusukawa, J., Ebner, K. E. & Padmanabhan, R. ( 1995; ). Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J Biol Chem 270, 19100–19106.[CrossRef]
    [Google Scholar]
  19. Karupiah, G. & Harris, N. ( 1995; ). Inhibition of viral replication by nitric oxide and its reversal by ferrous sulfate and tricarboxylic acid cycle metabolites. J Exp Med 181, 2171–2179.[CrossRef]
    [Google Scholar]
  20. Kreil, T. R. & Eibl, M. M. ( 1996; ). Nitric oxide and viral infection: NO antiviral activity against a flavivirus in vitro, and evidence for contribution to pathogenesis in experimental infection in vivo. Virology 219, 304–306.[CrossRef]
    [Google Scholar]
  21. Lanciotti, R. S., Lewis, J. G., Gubler, D. J. & Trent, D. W. ( 1994; ). Molecular evolution and epidemiology of dengue-3 viruses. J Gen Virol 75, 65–75.[CrossRef]
    [Google Scholar]
  22. Li, H., Clum, S., You, S., Ebner, K. E. & Padmanabhan, R. ( 1999; ). The serine protease and the RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. J Virol 73, 3108–3116.
    [Google Scholar]
  23. Lin, Y.-L., Huang, Y.-L., Ma, S.-H., Yeh, C.-T., Chiou, S.-Y., Chen, L.-K. & Liao, C.-L. ( 1997; ). Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. J Virol 71, 5227–5235.
    [Google Scholar]
  24. Lin, Y.-W., Wang, K.-J., Lei, H.-Y., Lin, Y.-S., Yeh, T.-M., Liu, H.-S., Liu, C.-C. & Chen, S.-H. ( 2002; ). Virus replication and cytokine production in dengue virus-infected human B lymphocytes. J Virol 76, 12242–12249.[CrossRef]
    [Google Scholar]
  25. Lindenbach, B. D. & Rice, C. M. ( 2003; ). Molecular biology of flaviviruses. Adv Virus Res 59, 23–61.
    [Google Scholar]
  26. Lipton, S. A., Choi, Y.-B., Pan, Z.-H., Lei, S. Z., Chen, H.-S. V., Sucher, N. J., Loscalzo, J., Singel, D. J. & Stamler, J. S. ( 1993; ). A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626–632.[CrossRef]
    [Google Scholar]
  27. Mannick, J. B., Asano, K., Izumi, K., Kieff, E. & Stamler, J. S. ( 1994; ). Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein–Barr virus reactivation. Cell 79, 1137–1146.[CrossRef]
    [Google Scholar]
  28. Marianneau, P., Steffan, A.-M., Royer, C., Drouet, M.-T., Jaeck, D., Kirn, A. & Deubel, V. ( 1999; ). Infection of primary cultures of human Kupffer cells by dengue virus: no viral progeny synthesis, but cytokine production is evident. J Virol 73, 5201–5206.
    [Google Scholar]
  29. Marletta, M. A. ( 1994; ). Approaches toward selective inhibition of nitric oxide synthase. J Med Chem 37, 1899–1907.[CrossRef]
    [Google Scholar]
  30. Murad, F. ( 1996; ). The 1996 Albert Lasker Medical Research Awards. Signal transduction using nitric oxide and cyclic guanosine monophosphate. JAMA 276, 1189–1192.[CrossRef]
    [Google Scholar]
  31. Neves-Souza, P. C., Azeredo, E. L., Zagne, S. M. O., Valls-de-Souza, R., Reis, S. R. N. I., Cerqueira, D. I. S., Nogueira, R. M. R. & Kubelka, C. F. ( 2005; ). Inducible nitric oxide synthase (iNOS) expression in monocytes during acute dengue fever in patients and during in vitro infection. BMC Infect Dis 5, 64.[CrossRef]
    [Google Scholar]
  32. O'Reilly, E. K. & Kao, C. C. ( 1998; ). Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology 252, 287–303.[CrossRef]
    [Google Scholar]
  33. Padalko, E., Ohnishi, T., Matsushita, K., Sun, H., Fox-Talbot, K., Bao, C., Baldwin, W. M., III & Lowenstein, C. J. ( 2004; ). Peroxynitrite inhibition of Coxsackievirus infection by prevention of viral RNA entry. Proc Natl Acad Sci U S A 101, 11731–11736.[CrossRef]
    [Google Scholar]
  34. Persichini, T., Colasanti, M., Lauro, G. M. & Ascenzi, P. ( 1998; ). Cysteine nitrosylation inactivates the HIV-1 protease. Biochem Biophys Res Commun 250, 575–576.[CrossRef]
    [Google Scholar]
  35. Poch, O., Sauvaget, I., Delarue, M. & Tordo, N. ( 1989; ). Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8, 3867–3874.
    [Google Scholar]
  36. Rohn, T. T., Nelson, L. K., Davis, A. R. & Quinn, M. T. ( 1999; ). Inhibition of GTP binding to Rac2 by peroxynitrite: potential role for tyrosine modification. Free Radic Biol Med 26, 1321–1331.[CrossRef]
    [Google Scholar]
  37. Rozanov, M. N., Koonin, E. V. & Gorbalenya, A. E. ( 1992; ). Conservation of the putative methyltransferase domain: a hallmark of the ‘Sindbis-like’ supergroup of positive-strand RNA viruses. J Gen Virol 73, 2129–2134.[CrossRef]
    [Google Scholar]
  38. Saura, M., Zaragoza, C., McMillan, A., Quick, R. A., Hohenadl, C., Lowenstein, J. M. & Lowenstein, C. J. ( 1999; ). An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity 10, 21–28.[CrossRef]
    [Google Scholar]
  39. Saxena, S. K., Singh, A. & Mathur, A. ( 2000; ). Antiviral effect of nitric oxide during Japanese encephalitis virus infection. Int J Exp Pathol 81, 165–172.[CrossRef]
    [Google Scholar]
  40. Stamler, J. S., Simon, D. I., Osborne, J. A., Mullins, M. E., Jaraki, O., Michel, T., Singel, D. J. & Loscalzo, J. ( 1992; ). S-Nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A 89, 444–448.[CrossRef]
    [Google Scholar]
  41. Tan, B.-H., Fu, J., Sugrue, R. J., Yap, E.-H., Chan, Y.-C. & Tan, Y. H. ( 1996; ). Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. Virology 216, 317–325.[CrossRef]
    [Google Scholar]
  42. Uchil, P. D. & Satchidanandam, V. ( 2003; ). Characterization of RNA synthesis, replication mechanism, and in vitro RNA-dependent RNA polymerase activity of Japanese encephalitis virus. Virology 307, 358–371.[CrossRef]
    [Google Scholar]
  43. Venturini, G., Colasanti, M., Salvati, L., Gradoni, L. & Ascenzi, P. ( 2000; ). Nitric oxide inhibits falcipain, the Plasmodium falciparum trophozoite cysteine protease. Biochem Biophys Res Commun 267, 190–193.[CrossRef]
    [Google Scholar]
  44. Warrener, P., Tamura, J. K. & Collett, M. S. ( 1993; ). RNA-stimulated NTPase activity associated with yellow fever virus NS3 protein expressed in bacteria. J Virol 67, 989–996.
    [Google Scholar]
  45. Wengler, G. & Wengler, G. ( 1991; ). The carboxy-terminal part of the NS 3 protein of the West Nile flavivirus can be isolated as a soluble protein after proteolytic cleavage and represents an RNA-stimulated NTPase. Virology 184, 707–715.[CrossRef]
    [Google Scholar]
  46. Wengler, G. & Wengler, G. ( 1993; ). The NS 3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity. Virology 197, 265–273.[CrossRef]
    [Google Scholar]
  47. Westaway, E. G., Mackenzie, J. M., Kenney, M. T., Jones, M. K. & Khromykh, A. A. ( 1997; ). Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane-structures. J Virol 71, 6650–6661.
    [Google Scholar]
  48. Westaway, E. G., Mackenzie, J. M. & Khromykh, A. A. ( 2002; ). Replication and gene function in Kunjin virus. Curr Top Microbiol Immunol 267, 323–351.
    [Google Scholar]
  49. Westaway, E. G., Mackenzie, J. M. & Khromykh, A. A. ( 2003; ). Kunjin RNA replication and applications of Kunjin replicons. Adv Virus Res 59, 99–140.
    [Google Scholar]
  50. Wu, S.-J. L., Grouard-Vogel, G., Sun, W. & 14 other authors ( 2000; ). Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6, 816–820.[CrossRef]
    [Google Scholar]
  51. Yocupicio-Monroy, R. M. E., Medina, F., Reyes-del Valle, J. & del Angel, R. M. ( 2003; ). Cellular proteins from human monocytes bind to dengue 4 virus minus-strand 3′ untranslated region RNA. J Virol 77, 3067–3076.[CrossRef]
    [Google Scholar]
  52. Yon, C., Teramoto, T., Mueller, N., Phelan, J., Ganesh, V. K., Murthy, K. H. M. & Padmanabhan, R. ( 2005; ). Modulation of the nucleoside triphosphatase/RNA helicase and 5′-RNA triphosphatase activities of dengue virus type 2 nonstructural protein 3 (NS3) by interaction with NS5, the RNA-dependent RNA polymerase. J Biol Chem 280, 27412–27419.[CrossRef]
    [Google Scholar]
  53. You, S. & Padmanabhan, R. ( 1999; ). A novel in vitro replication system for dengue virus. Initiation of RNA synthesis at the 3′-end of exogenous viral RNA templates requires 5′- and 3′-terminal complementary sequence motifs of the viral RNA. J Biol Chem 274, 33714–33722.[CrossRef]
    [Google Scholar]
  54. You, S., Falgout, B., Markoff, L. & Padmanabhan, R. ( 2001; ). In vitro RNA synthesis from exogenous dengue viral RNA templates requires long range interactions between 5′- and 3′-terminal regions that influence RNA structure. J Biol Chem 276, 15581–15591.[CrossRef]
    [Google Scholar]
  55. Zaragoza, C., Ocampo, C. J., Saura, M., Bao, C., Leppo, M., Lafond-Walker, A., Thiemann, D. R., Hruban, R. & Lowenstein, C. J. ( 1999; ). Inducible nitric oxide synthase protection against coxsackievirus pancreatitis. J Immunol 163, 5497–5504.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81880-0
Loading
/content/journal/jgv/10.1099/vir.0.81880-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error