1887

Abstract

Human cytomegalovirus (HCMV) infection appears to be linked to the pathogenesis of atherosclerosis. An association between HCMV infection and an enhanced restenosis rate as well as the induction of vasculopathies after solid organ transplantation has been documented. Knowledge of the cellular and molecular basis of these findings is limited, however. By Northern blot and RT-PCR analysis of human foreskin fibroblasts (HFF) and human coronary artery smooth muscle cells (SMC), we identified extracellular matrix (ECM) genes that were downregulated after HCMV infection, including collagen type I and fibronectin. Quantitative immunoassays showed a significant reduction of soluble collagen type I and fibronectin proteins in supernatants of both cell types. This was shown to be a direct effect of HCMV infection and not due to a response to interferons released from infected cells, since neutralization of alpha and beta interferon activity could not block virus-induced downregulation of matrix proteins. As the amount of ECM depends on both synthesis and degradation, we also assessed the influence of HCMV on the activity of matrix metalloproteinases (MMP). Interestingly, a significant difference in virus-induced matrix degradation could be shown between the two cell types. HCMV upregulated MMP-2 protein and activity in SMC but not in HFF. Thus, HCMV infection of SMC reduces ECM dramatically by inducing two independent mechanisms that influence synthesis as well as degradation of ECM. These may represent molecular mechanisms for HCMV-induced pathogenesis of inflammatory vasculopathies and may facilitate dissemination of HCMV by promoting the detachment of infected cells .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81955-0
2006-10-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/2849.html?itemId=/content/journal/jgv/10.1099/vir.0.81955-0&mimeType=html&fmt=ahah

References

  1. Aimes R. T., Quigley J. P. 1995; Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem 270:5872–5876 [CrossRef]
    [Google Scholar]
  2. Bachem M. G., Schunemann M., Ramadani M., Siech M., Beger H., Buck A., Zhou S., Schmid-Kotsas A., Adler G. 2005; Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128:907–921 [CrossRef]
    [Google Scholar]
  3. Brooke B. S., Karnik S. K., Li D. Y. 2003; Extracellular matrix in vascular morphogenesis and disease: structure versus signal. Trends Cell Biol 13:51–56 [CrossRef]
    [Google Scholar]
  4. Cullen P., Baetta R., Bellosta S. & 18 other authors 2003; Rupture of the atherosclerotic plaque: does a good animal model exist?. Arterioscler Thromb Vasc Biol 23:535–542 [CrossRef]
    [Google Scholar]
  5. Galis Z. S., Sukhova G. K., Lark M. W., Libby P. 1994; Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503 [CrossRef]
    [Google Scholar]
  6. Gerna G., Percivalle E., Sarasini A., Baldanti F., Campanini G., Revello M. G. 2003; Rescue of human cytomegalovirus strain AD169 tropism for both leukocytes and human endothelial cells. J Gen Virol 84:1431–1436 [CrossRef]
    [Google Scholar]
  7. Grefte A., Van der Giessen M., van Son W., The T. H. 1993; Circulating cytomegalovirus (CMV)-infected endothelial cells in patients with an active CMV infection. J Infect Dis 167:270–277 [CrossRef]
    [Google Scholar]
  8. Ivan E., Khatri J. J., Johnson C., Magid R., Godin D., Nandi S., Lessner S., Galis Z. S. 2002; Expansive arterial remodeling is associated with increased neointimal macrophage foam cell content: the murine model of macrophage-rich carotid artery lesions. Circulation 105:2686–2691 [CrossRef]
    [Google Scholar]
  9. Libby P. 1995; Molecular bases of the acute coronary syndromes. Circulation 91:2844–2850 [CrossRef]
    [Google Scholar]
  10. Luttenberger T., Schmid-Kotsas A., Menke A., Siech M., Beger H., Adler G., Grunert A., Bachem M. G. 2000; Platelet derived growth factors stimulate proliferation and extracellular matrix synthesis of cultured human pancreatic stellate cells. Lab Invest 80:47–55 [CrossRef]
    [Google Scholar]
  11. Maseri A., Fuster V. 2003; Is there a vulnerable plaque?. Circulation 107:2068–2071 [CrossRef]
    [Google Scholar]
  12. Melnick J. L., Petrie B. L., Dreesman G. R., Burek J., McCollum C. H., DeBakey M. E. 1983; Cytomegalovirus antigen within human arterial smooth muscle cells. Lancet ii:644–647
    [Google Scholar]
  13. Michel D., Pavic I., Zimmermann A., Haupt E., Wunderlich K., Heuschmid M., Mertens T. 1996; The UL97 gene product of the human cytomegalovirus is an early-late protein with a nuclear localization but is not a nucleoside kinase. J Virol 70:6340–6347
    [Google Scholar]
  14. Naghavi M., Libby P., Falk E. & 58 other authors 2003; From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 108:1772–1778 [CrossRef]
    [Google Scholar]
  15. Pande H., Terramani T., Tressel T., Churchill M. A., Hawkins G. G., Zaia J. A. 1990; Altered expression of fibronectin gene in cells infected with human cytomegalovirus. J Virol 64:1366–1369
    [Google Scholar]
  16. Pasterkamp G., Schoneveld A. H., Hijnen D. J., de Kleijn D. P., Teepen H., van der Wal A. C., Borst C. 2000; Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1, 2 and 9 in the human coronary artery. Atherosclerosis 150:245–253 [CrossRef]
    [Google Scholar]
  17. Reinhardt B., Minisini R., Mertens T. 2002; Opinion article: cytomegalovirus is a risk factor in atherogenesis. Herpes 9:21–23
    [Google Scholar]
  18. Reinhardt B., Vaida B., Voisard R. & 7 other authors 2003; Human cytomegalovirus infection in human renal arteries in vitro. J Virol Methods 109:1–9 [CrossRef]
    [Google Scholar]
  19. Reinhardt B., Mertens T., Mayr-Beyrle U., Frank H., Luske A., Schierling K., Waltenberger J. 2005a; HCMV infection of human vascular smooth muscle cells leads to enhanced expression of functionally intact PDGF beta-receptor. Cardiovasc Res 67:151–160 [CrossRef]
    [Google Scholar]
  20. Reinhardt B., Schaarschmidt P., Bossert A., Luske A., Finkenzeller G., Mertens T., Michel D. 2005b; Upregulation of functionally active vascular endothelial growth factor by human cytomegalovirus. J Gen Virol 86:23–30 [CrossRef]
    [Google Scholar]
  21. Schaarschmidt P., Reinhardt B., Michel D. & 10 other authors 1999; Altered expression of extracellular matrix in human-cytomegalovirus-infected cells and a human artery organ culture model to study its biological relevance. Intervirology 42:357–364 [CrossRef]
    [Google Scholar]
  22. Schmid-Kotsas A., Gross H. J., Menke A., Weidenbach H., Adler G., Siech M., Beger H., Grunert A., Bachem M. G. 1999; Lipopolysaccharide-activated macrophages stimulate the synthesis of collagen type I and c-fibronectin in cultured pancreatic stellate cells. Am J Pathol 155:1749–1758 [CrossRef]
    [Google Scholar]
  23. Schoenhagen P., Ziada K. M., Kapadia S. R., Crowe T. D., Nissen S. E., Tuzcu E. M. 2000; Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 101:598–603 [CrossRef]
    [Google Scholar]
  24. Sinzger C., Grefte A., Plachter B., Gouw A. S., The T. H., Jahn G. 1995; Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76:741–750 [CrossRef]
    [Google Scholar]
  25. Speir E., Modali R., Huang E. S., Leon M. B., Shawl F., Finkel T., Epstein S. E. 1994; Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 265:391–394 [CrossRef]
    [Google Scholar]
  26. Srivastava R., Curtis M., Hendrickson S., Burns W. H., Hosenpud J. D. 1999; Strain specific effects of cytomegalovirus on endothelial cells: implications for investigating the relationship between CMV and cardiac allograft vasculopathy. Transplantation 68:1568–1573 [CrossRef]
    [Google Scholar]
  27. Streblow D. N., Soderberg-Naucler C., Vieira J., Smith P., Wakabayashi E., Ruchti F., Mattison K., Altschuler Y., Nelson J. A. 1999; The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99:511–520 [CrossRef]
    [Google Scholar]
  28. Streuli C. 1999; Extracellular matrix remodelling and cellular differentiation. Curr Opin Cell Biol 11:634–640 [CrossRef]
    [Google Scholar]
  29. Wagner M., Michel D., Schaarschmidt P., Vaida B., Jonjic S., Messerle M., Mertens T., Koszinowski U. 2000; Comparison between human cytomegalovirus pUL97 and murine cytomegalovirus (MCMV) pM97 expressed by MCMV and vaccinia virus: pM97 does not confer ganciclovir sensitivity. J Virol 74:10729–10736 [CrossRef]
    [Google Scholar]
  30. Walther P., Muller M. 1999; Biological ultrastructure as revealed by high resolution cryo-SEM of block faces after cryo-sectioning. J Microsc 196:279–287 [CrossRef]
    [Google Scholar]
  31. Winkler M., Rice S. A., Stamminger T. 1994; UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression. J Virol 68:3943–3954
    [Google Scholar]
  32. Zhou Y. F., Leon M. B., Waclawiw M. A., Popma J. J., Yu Z. X., Finkel T., Epstein S. E. 1996; Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N Engl J Med 335:624–630 [CrossRef]
    [Google Scholar]
  33. Zhu H., Cong J.-P., Mamtora G., Gingeras T., Shenk T. 1998; Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc Natl Acad Sci U S A 95:14470–14475 [CrossRef]
    [Google Scholar]
  34. Zimmermann A., Trilling M., Wagner M., Wilborn M., Bubic I., Jonjic S., Koszinowski U., Hengel H. 2005; A cytomegaloviral protein reveals a dual role for STAT2 in IFN- γ signaling and antiviral responses. J Exp Med 201:1543–1553 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.81955-0
Loading
/content/journal/jgv/10.1099/vir.0.81955-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error