1887

Abstract

The rubivirus contains the two envelope glycoproteins E2 and E1 as a heterodimeric spike complex embedded in its lipid envelope. The functions of both proteins, especially of E2, in the process of viral entry are still not entirely understood. In order to dissect E2 and E1 entry functions from post-entry steps, pseudotypes of lentiviral vectors based on were used. C-terminally modified E2 and E1 variants successfully pseudotyped lentiviral vector particles. This is the first report to show that not only E1, but also E2, is able to mediate infectious viral entry. Furthermore, a cell–cell fusion assay was used to further clarify membrane-fusion activities of E2 and E1 as one of the early steps of infection. It was demonstrated that the capsid protein, when coexpressed , enhances the degree of E2- and E1-mediated cell–cell fusion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82035-0
2006-10-01
2019-09-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/3029.html?itemId=/content/journal/jgv/10.1099/vir.0.82035-0&mimeType=html&fmt=ahah

References

  1. Baron, M. D. & Forsell, K. ( 1991; ). Oligomerisation of the structural proteins of rubella virus. Virology 185, 811–819.[CrossRef]
    [Google Scholar]
  2. Baron, M. D., Ebel, T. & Suomalainen, M. ( 1992; ). Intracellular transport of rubella virus structural proteins expressed from cloned cDNA. J Gen Virol 73, 1073–1086.[CrossRef]
    [Google Scholar]
  3. Bartosch, B., Dubuisson, J. & Cosset, F.-L. ( 2003; ). Infectious hepatitis C virus pseudo-particles containing functional E1–E2 envelope protein complexes. J Exp Med 197, 633–642.[CrossRef]
    [Google Scholar]
  4. Blobel, C. P., Wolfsberg, T. G., Turck, C. W., Myles, D. G., Primakoff, P. & White, J. M. ( 1992; ). A potential fusion peptide and an integrin ligand domain in a protein active in sperm–egg fusion. Nature 356, 248–252.[CrossRef]
    [Google Scholar]
  5. Chantler, J., Wolinsky, J. S. & Tingle, A. ( 2001; ). Rubella virus. In Fields Virology, 4th edn, pp. 963–990. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  6. Christodoulopoulos, I. & Cannon, P. M. ( 2001; ). Sequences in the cytoplasmic tail of the gibbon ape leukemia virus envelope protein that prevent its incorporation into lentivirus vectors. J Virol 75, 4129–4138.[CrossRef]
    [Google Scholar]
  7. Dorsett, P. H., Miller, D. C., Green, K. Y. & Byrd, F. I. ( 1985; ). Structure and function of the rubella virus proteins. Rev Infect Dis 7 (Suppl. 1), S150–S156.[CrossRef]
    [Google Scholar]
  8. Frey, T. K. ( 1994; ). Molecular biology of rubella virus. Adv Virus Res 44, 69–160.
    [Google Scholar]
  9. Garbutt, M., Law, L. M. J., Chan, H. & Hobman, T. C. ( 1999; ). Role of rubella virus glycoprotein domains in assembly of virus-like particles. J Virol 73, 3524–3533.
    [Google Scholar]
  10. Green, K. Y. & Dorsett, P. H. ( 1986; ). Rubella virus antigens: localization of epitopes involved in hemagglutination and neutralization by using monoclonal antibodies. J Virol 57, 893–898.
    [Google Scholar]
  11. Hemphill, M. L., Forng, R.-Y., Abernathy, E. S. & Frey, T. K. ( 1988; ). Time course of virus-specific macromolecular synthesis during rubella virus infection in vero cells. Virology 162, 65–75.[CrossRef]
    [Google Scholar]
  12. Hobman, T. C., Seto, N. O. & Gillam, S. ( 1994; ). Expression of soluble forms of rubella virus glycoproteins in mammalian cells. Virus Res 31, 277–289.[CrossRef]
    [Google Scholar]
  13. Hobman, T. C., Woodward, L. & Farquhar, M. G. ( 1995; ). Targeting of a heterodimeric membrane protein complex to the Golgi: rubella virus E2 glycoprotein contains a transmembrane Golgi retention signal. Mol Biol Cell 6, 7–20.[CrossRef]
    [Google Scholar]
  14. Hobman, T. C., Lemon, H. F. & Jewell, K. ( 1997; ). Characterization of an endoplasmic reticulum retention signal in the rubella virus E1 glycoprotein. J Virol 71, 7670–7680.
    [Google Scholar]
  15. Hobman, T. C., Zhao, B., Chan, H. & Farquhar, M. G. ( 1998; ). Immunoisolation and characterization of a subdomain of the endoplasmic reticulum that concentrates proteins involved in COPII vesicle biogenesis. Mol Biol Cell 9, 1265–1278.[CrossRef]
    [Google Scholar]
  16. Höhne, M., Thaler, S., Dudda, J. C., Groner, B. & Schnierle, B. S. ( 1999; ). Truncation of the human immunodeficiency virus-type-2 envelope glycoprotein allows efficient pseudotyping of murine leukemia virus retroviral vector particles. Virology 261, 70–78.[CrossRef]
    [Google Scholar]
  17. Ho-Terry, L. & Cohen, A. ( 1980; ). Degradation of rubella virus envelope components. Arch Virol 65, 1–13.[CrossRef]
    [Google Scholar]
  18. Hsu, M., Zhang, J., Flint, M., Logvinoff, C., Cheng-Mayer, C., Rice, C. M. & McKeating, J. A. ( 2003; ). Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A 100, 7271–7276.[CrossRef]
    [Google Scholar]
  19. Katow, S. & Sugiura, A. ( 1985; ). Antibody response to individual rubella virus proteins in congenital and other rubella virus infections. J Clin Microbiol 21, 449–451.
    [Google Scholar]
  20. Katow, S. & Sugiura, A. ( 1988; ). Low pH-induced conformational change of rubella virus envelope proteins. J Gen Virol 69, 2797–2807.[CrossRef]
    [Google Scholar]
  21. Kobayashi, M., Iida, A., Ueda, Y. & Hasegawa, M. ( 2003; ). Pseudotyped lentivirus vectors derived from simian immunodeficiency virus SIVagm with envelope glycoproteins from paramyxovirus. J Virol 77, 2607–2614.[CrossRef]
    [Google Scholar]
  22. Law, L. M. J., Duncan, R., Esmaili, A., Nakhasi, H. L. & Hobman, T. C. ( 2001; ). Rubella virus E2 signal peptide is required for perinuclear localization of capsid protein and virus assembly. J Virol 75, 1978–1983.[CrossRef]
    [Google Scholar]
  23. Lee, H., Ricker, P. D. & Brown, D. T. ( 1994; ). The configuration of Sindbis virus envelope proteins is stabilized by the nucleocapsid protein. Virology 204, 471–474.[CrossRef]
    [Google Scholar]
  24. Lindemann, D., Bock, M., Schweizer, M. & Rethwilm, A. ( 1997; ). Efficient pseudotyping of murine leukemia virus particles with chimeric human foamy virus envelope proteins. J Virol 71, 4815–4820.
    [Google Scholar]
  25. Ma, M., Kersten, D. B., Kamrud, K. I., Wool-Lewis, R. J., Schmaljohn, C. & González-Scarano, F. ( 1999; ). Murine leukemia virus pseudotypes of La Crosse and Hantaan bunyaviruses: a system for analysis of cell tropism. Virus Res 64, 23–32.[CrossRef]
    [Google Scholar]
  26. Matsuura, Y., Tani, H., Suzuki, K. & 8 other authors ( 2001; ). Characterization of pseudotype VSV possessing HCV envelope proteins. Virology 286, 263–275.[CrossRef]
    [Google Scholar]
  27. Nedeljkovic, J., Jovanovic, T., Mladjenovic, S., Hedman, K., Peitsaro, N. & Oker-Blom, C. ( 1999; ). Immunoblot analysis of natural and vaccine-induced IgG responses to rubella virus proteins expressed in insect cells. J Clin Virol 14, 119–131.[CrossRef]
    [Google Scholar]
  28. Ojala, K., Tikka, P. J., Kautto, L., Käpylä, P., Marjomäki, V. & Oker-Blom, C. ( 2004; ). Expression and trafficking of fluorescent viral membrane proteins in baculovirus-transduced BHK cells. J Biotechnol 114, 165–175.[CrossRef]
    [Google Scholar]
  29. Qiu, Z., Yao, J., Cao, H. & Gillam, S. ( 2000; ). Mutations in the E1 hydrophobic domain of rubella virus impair virus infectivity but not virus assembly. J Virol 74, 6637–6642.[CrossRef]
    [Google Scholar]
  30. Risco, C., Carrascosa, J. L. & Frey, T. K. ( 2003; ). Structural maturation of rubella virus in the Golgi complex. Virology 312, 261–269.[CrossRef]
    [Google Scholar]
  31. Saha, M. N., Tanaka, A., Jinno-Oue, A., Shimizu, N., Tamura, K., Shinagawa, M., Chiba, J. & Hoshino, H. ( 2005; ). Formation of vesicular stomatitis virus pseudotypes bearing surface proteins of hepatitis B virus. J Virol 79, 12566–12574.[CrossRef]
    [Google Scholar]
  32. Sandrin, V., Muriaux, D., Darlix, J.-L. & Cosset, F.-L. ( 2004; ). Intracellular trafficking of Gag and Env proteins and their interactions modulate pseudotyping of retroviruses. J Virol 78, 7153–7164.[CrossRef]
    [Google Scholar]
  33. Sanz, M. A., Rejas, M. T. & Carrasco, L. ( 2003; ). Individual expression of Sindbis virus glycoproteins. E1 alone promotes cell fusion. Virology 305, 463–472.[CrossRef]
    [Google Scholar]
  34. Schnell, T., Foley, P., Wirth, M., Munch, J. & Uberla, K. ( 2000; ). Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Hum Gene Ther 11, 439–447.[CrossRef]
    [Google Scholar]
  35. White, J., Matlin, K. & Helenius, A. ( 1981; ). Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J Cell Biol 89, 674–679.[CrossRef]
    [Google Scholar]
  36. Yang, D., Hwang, D., Qiu, Z. & Gillam, S. ( 1998; ). Effects of mutations in the rubella virus E1 glycoprotein on E1-E2 interaction and membrane fusion activity. J Virol 72, 8747–8755.
    [Google Scholar]
  37. Zhao, H. & Garoff, H. ( 1992; ). Role of cell surface spikes in alphavirus budding. J Virol 66, 7089–7095.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82035-0
Loading
/content/journal/jgv/10.1099/vir.0.82035-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error