1887

Abstract

(MV), a member of the genus in the family , is an enveloped virus with a non-segmented, negative-strand RNA genome. It has two envelope glycoproteins, the haemagglutinin (H) and fusion proteins, which are responsible for attachment and membrane fusion, respectively. Human signalling lymphocyte activation molecule (SLAM; also called CD150), a membrane glycoprotein of the immunoglobulin superfamily, acts as a cellular receptor for MV. SLAM is expressed on immature thymocytes, activated lymphocytes, macrophages and dendritic cells and regulates production of interleukin (IL)-4 and IL-13 by CD4 T cells, as well as production of IL-12, tumour necrosis factor alpha and nitric oxide by macrophages. The distribution of SLAM is in accord with the lymphotropism and immunosuppressive nature of MV. and , other members of the genus , also use canine and bovine SLAM as receptors, respectively. Laboratory-adapted MV strains may use the ubiquitously expressed CD46, a complement-regulatory molecule, as an alternative receptor through amino acid substitutions in the H protein. Furthermore, MV can infect SLAM cells, albeit inefficiently, via the SLAM- and CD46-independent pathway, which may account for MV infection of epithelial, endothelial and neuronal cells . MV infection, however, is not determined entirely by the H protein–receptor interaction, and other MV proteins can also contribute to its efficient growth by facilitating virus replication at post-entry steps. Identification of SLAM as the principal receptor for MV has provided us with an important clue for better understanding of MV tropism and pathogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82221-0
2006-10-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/2767.html?itemId=/content/journal/jgv/10.1099/vir.0.82221-0&mimeType=html&fmt=ahah

References

  1. Andrejeva, J., Childs, K. S., Young, D. F., Carlos, T. S., Stock, N., Goodbourn, S. & Randall, R. E. ( 2004; ). The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter. Proc Natl Acad Sci U S A 101, 17264–17269.[CrossRef]
    [Google Scholar]
  2. Andres, O., Obojes, K., Kim, K. S., ter Meulen, V. & Schneider-Schaulies, J. ( 2003; ). CD46- and CD150-independent endothelial cell infection with wild-type measles viruses. J Gen Virol 84, 1189–1197.[CrossRef]
    [Google Scholar]
  3. Appel, M. J. G. ( 1969; ). Pathogenesis of canine distemper. Am J Vet Res 30, 1167–1182.
    [Google Scholar]
  4. Appel, M. J. G. & Jones, O. R. ( 1967; ). Use of alveolar macrophages for cultivation of canine distemper virus. Proc Soc Exp Biol Med 126, 571–574.[CrossRef]
    [Google Scholar]
  5. Appel, M. J. G. & Gillespie, J. H. ( 1972; ). Canine distemper virus. In Virology Monographs, vol. 11, pp. 1–96. Edited by S. Gard, C. Hallauer and K. F. Meyer. New York: Springer.
  6. Appel, M. J. G., Pearce-Kelling, S. & Summers, B. A. ( 1992; ). Dog lymphocyte cultures facilitate the isolation and growth of virulent canine distemper virus. J Vet Diagn Invest 4, 258–263.[CrossRef]
    [Google Scholar]
  7. Atabani, S. F., Byrnes, A. A., Jaye, A., Kidd, I. M., Magnusen, A. F., Whittle, H. & Karp, C. L. ( 2001; ). Natural measles causes prolonged suppression of interleukin-12 production. J Infect Dis 184, 1–9.[CrossRef]
    [Google Scholar]
  8. Aversa, G., Chang, C.-C., Carballido, J. M., Cocks, B. G. & de Vries, J. E. ( 1997; ). Engagement of the signaling lymphocytic activation molecule (SLAM) on activated T cells results in IL-2-independent, cyclosporin A-sensitive T cell proliferation and IFN-gamma production. J Immunol 158, 4036–4044.
    [Google Scholar]
  9. Avota, E., Avots, A., Niewiesk, S., Kane, L. P., Bommhardt, U., ter Meulen, V. & Schneider-Schaulies, S. ( 2001; ). Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nat Med 7, 725–731.[CrossRef]
    [Google Scholar]
  10. Bankamp, B., Wilson, J., Bellini, W. J. & Rota, P. A. ( 2005; ). Identification of naturally occurring amino acid variations that affect the ability of the measles virus C protein to regulate genome replication and transcription. Virology 336, 120–129.[CrossRef]
    [Google Scholar]
  11. Baron, M. D. ( 2005; ). Wild-type Rinderpest virus uses SLAM (CD150) as its receptor. J Gen Virol 86, 1753–1757.[CrossRef]
    [Google Scholar]
  12. Bartz, R., Brinckmann, U., Dunster, L. M., Rima, B., ter Meulen, V. & Schneider-Schaulies, J. ( 1996; ). Mapping amino acids of the measles virus hemagglutinin responsible for receptor (CD46) downregulation. Virology 224, 334–337.[CrossRef]
    [Google Scholar]
  13. Bartz, R., Firsching, R., Rima, B., ter Meulen, V. & Schneider-Schaulies, J. ( 1998; ). Differential receptor usage by measles virus strains. J Gen Virol 79, 1015–1025.
    [Google Scholar]
  14. Bellini, W. J., Rota, J. S., Lowe, L. E., Katz, R. S., Dyken, P. R., Zaki, S. R., Shieh, W.-J. & Rota, P. A. ( 2005; ). Subacute sclerosing panencephalitis: more cases of this fatal disease are prevented by measles immunization than was previously recognized. J Infect Dis 192, 1686–1693.[CrossRef]
    [Google Scholar]
  15. Bieback, K., Lien, E., Klagge, I. M. & 7 other authors ( 2002; ). Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J Virol 76, 8729–8736.[CrossRef]
    [Google Scholar]
  16. Bluming, A. Z. & Ziegler, J. L. ( 1971; ). Regression of Burkitt's lymphoma in association with measles infection. Lancet ii, 105–106.
    [Google Scholar]
  17. Bryce, J., Boschi-Pinto, C., Shibuya, K. & Black, R. E. ( 2005; ). WHO estimates of the causes of death in children. Lancet 365, 1147–1152.[CrossRef]
    [Google Scholar]
  18. Buchholz, C. J., Schneider, U., Devaux, P., Gerlier, D. & Cattaneo, R. ( 1996; ). Cell entry by measles virus: long hybrid receptors uncouple binding from membrane fusion. J Virol 70, 3716–3723.
    [Google Scholar]
  19. Buckland, R. & Wild, T. F. ( 1997; ). Is CD46 the cellular receptor for measles virus? Virus Res 48, 1–9.[CrossRef]
    [Google Scholar]
  20. Cathomen, T., Mrkic, B., Spehner, D., Drillien, R., Naef, R., Pavlovic, J., Aguzzi, A., Billeter, M. A. & Cattaneo, R. ( 1998; ). A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 17, 3899–3908.[CrossRef]
    [Google Scholar]
  21. Cattaneo, R. ( 2004; ). Four viruses, two bacteria, and one receptor: membrane cofactor protein (CD46) as pathogens' magnet. J Virol 78, 4385–4388.[CrossRef]
    [Google Scholar]
  22. Cocks, B. G., Chang, C.-C. J., Carballido, J. M., Yssel, H., de Vries, J. E. & Aversa, G. ( 1995; ). A novel receptor involved in T-cell activation. Nature 376, 260–263.[CrossRef]
    [Google Scholar]
  23. Conzelmann, K.-K. ( 2005; ). Transcriptional activation of alpha/beta interferon genes: interference by nonsegmented negative-strand RNA viruses. J Virol 79, 5241–5248.[CrossRef]
    [Google Scholar]
  24. Crennell, S., Takimoto, T., Portner, A. & Taylor, G. ( 2000; ). Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase. Nat Struct Biol 7, 1068–1074.[CrossRef]
    [Google Scholar]
  25. Devaux, P. & Cattaneo, R. ( 2004; ). Measles virus phosphoprotein gene products: conformational flexibility of the P/V protein amino-terminal domain and C protein infectivity factor function. J Virol 78, 11632–11640.[CrossRef]
    [Google Scholar]
  26. Devaux, P., Loveland, B., Christiansen, D., Milland, J. & Gerlier, D. ( 1996; ). Interactions between the ectodomains of haemagglutinin and CD46 as a primary step in measles virus entry. J Gen Virol 77, 1477–1481.[CrossRef]
    [Google Scholar]
  27. de Witte, L., Abt, M., Schneider-Schaulies, S., van Kooyk, Y. & Geijtenbeek, T. B. H. ( 2006; ). Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 80, 3477–3486.[CrossRef]
    [Google Scholar]
  28. Dörig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. ( 1993; ). The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305.[CrossRef]
    [Google Scholar]
  29. Emeny, J. M. & Morgan, M. J. ( 1979; ). Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production. J Gen Virol 43, 247–252.[CrossRef]
    [Google Scholar]
  30. Enders, J. F. & Peebles, T. C. ( 1954; ). Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc Soc Exp Biol Med 86, 277–286.[CrossRef]
    [Google Scholar]
  31. Engel, P., Eck, M. J. & Terhorst, C. ( 2003; ). The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat Rev Immunol 3, 813–821.[CrossRef]
    [Google Scholar]
  32. Erlenhoefer, C., Wurzer, W. J., Loffler, S., Schneider-Schaulies, S., ter Meulen, V. & Schneider-Schaulies, J. ( 2001; ). CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75, 4499–4505.[CrossRef]
    [Google Scholar]
  33. Erlenhöfer, C., Duprex, W. P., Rima, B. K., ter Meulen, V. & Schneider-Schaulies, J. ( 2002; ). Analysis of receptor (CD46, CD150) usage by measles virus. J Gen Virol 83, 1431–1436.
    [Google Scholar]
  34. Escoffier, C., Manié, S., Vincent, S., Muller, C. P., Billeter, M. & Gerlier, D. ( 1999; ). Nonstructural C protein is required for efficient measles virus replication in human peripheral blood cells. J Virol 73, 1695–1698.
    [Google Scholar]
  35. Esolen, L. M., Ward, B. J., Moench, T. R. & Griffin, D. E. ( 1993; ). Infection of monocytes during measles. J Infect Dis 168, 47–52.[CrossRef]
    [Google Scholar]
  36. Farina, C., Theil, D., Semlinger, B., Hohlfeld, R. & Meinl, E. ( 2004; ). Distinct responses of monocytes to Toll-like receptor ligands and inflammatory cytokines. Int Immunol 16, 799–809.[CrossRef]
    [Google Scholar]
  37. Gerlier, D., Valentin, H., Laine, D., Rabourdin-Combe, C. & Servet-Delprat, C. ( 2006; ). Subversion of the immune system by measles virus: a model for the intricate interplay between a virus and the human immune system. In Microbial Subversion of Immunity: Current Topics, pp. 225–292. Edited by P. J. Lachmann & M. B. A. Oldstone. Norfolk, UK: Caister Academic Press.
  38. Griffin, D. E. ( 2001; ). Measles virus. In Fields Virology, 4th edn, pp. 1401–1441. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia: Lippincott Williams & Wilkins.
  39. Griffin, D. E. & Ward, B. J. ( 1993; ). Differential CD4 T cell activation in measles. J Infect Dis 168, 275–281.[CrossRef]
    [Google Scholar]
  40. Grote, D., Russell, S. J., Cornu, T. I., Cattaneo, R., Vile, R., Poland, G. A. & Fielding, A. K. ( 2001; ). Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 97, 3746–3754.[CrossRef]
    [Google Scholar]
  41. Hall, W. C., Kovatch, R. M., Herman, P. H. & Fox, J. G. ( 1971; ). Pathology of measles in rhesus monkeys. Vet Pathol 8, 307–319.
    [Google Scholar]
  42. Hamalainen, H., Meissner, S. & Lahesmaa, R. ( 2000; ). Signaling lymphocytic activation molecule (SLAM) is differentially expressed in human Th1 and Th2 cells. J Immunol Methods 242, 9–19.[CrossRef]
    [Google Scholar]
  43. Hammond, A. L., Plemper, R. K., Zhang, J., Schneider, U., Russell, S. J. & Cattaneo, R. ( 2001; ). Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen. J Virol 75, 2087–2096.[CrossRef]
    [Google Scholar]
  44. Hashimoto, K., Ono, N., Tatsuo, H., Minagawa, H., Takeda, M., Takeuchi, K. & Yanagi, Y. ( 2002; ). SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. J Virol 76, 6743–6749.[CrossRef]
    [Google Scholar]
  45. Herndon, R. M. & Rubinstein, L. J. ( 1968; ). Light and electron microscopy observations on the development of viral particles in the inclusions of Dawson's encephalitis (subacute sclerosing panencephalitis). Neurology 18, 8–20.[CrossRef]
    [Google Scholar]
  46. Horvath, C. M. ( 2004; ). Silencing STATs: lessons from paramyxovirus interferon evasion. Cytokine Growth Factor Rev 15, 117–127.[CrossRef]
    [Google Scholar]
  47. Hsu, E. C., Sarangi, F., Iorio, C. & 7 other authors ( 1998; ). A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. J Virol 72, 2905–2916.
    [Google Scholar]
  48. Hsu, E. C., Iorio, C., Sarangi, F., Khine, A. A. & Richardson, C. D. ( 2001; ). CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279, 9–21.[CrossRef]
    [Google Scholar]
  49. Ida-Hosonuma, M., Iwasaki, T., Yoshikawa, T. & 8 other authors ( 2005; ). The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J Virol 79, 4460–4469.[CrossRef]
    [Google Scholar]
  50. Iwata, K., Seya, T., Yanagi, Y., Pesando, J. M., Johnson, P. M., Okabe, M., Ueda, S., Ariga, H. & Nagasawa, S. ( 1995; ). Diversity of sites for measles virus binding and for inactivation of complement C3b and C4b on membrane cofactor protein CD46. J Biol Chem 270, 15148–15152.[CrossRef]
    [Google Scholar]
  51. Johnston, I. C. D., ter Meulen, V., Schneider-Schaulies, J. & Schneider-Schaulies, S. ( 1999; ). A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism. J Virol 73, 6903–6915.
    [Google Scholar]
  52. Kai, C., Ochikubo, F., Okita, M., Iinuma, T., Mikami, T., Kobune, F. & Yamanouchi, K. ( 1993; ). Use of B95a cells for isolation of canine distemper virus from clinical cases. J Vet Med Sci 55, 1067–1070.[CrossRef]
    [Google Scholar]
  53. Karp, C. L., Wysocka, M., Wahl, L. M., Ahearn, J. M., Cuomo, P. J., Sherry, B., Trinchieri, G. & Griffin, D. E. ( 1996; ). Mechanism of suppression of cell-mediated immunity by measles virus. Science 273, 228–231.[CrossRef]
    [Google Scholar]
  54. Katayama, Y., Hirano, A. & Wong, T. C. ( 2000; ). Human receptor for measles virus (CD46) enhances nitric oxide production and restricts virus replication in mouse macrophages by modulating production of alpha/beta interferon. J Virol 74, 1252–1257.[CrossRef]
    [Google Scholar]
  55. Kemper, C., Chan, A. C., Green, J. M., Brett, K. A., Murphy, K. M. & Atkinson, J. P. ( 2003; ). Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421, 388–392.[CrossRef]
    [Google Scholar]
  56. Kerdiles, Y. M., Sellin, C. I., Druelle, J. & Horvat, B. ( 2006; ). Immunosuppression caused by measles virus: role of viral proteins. Rev Med Virol 16, 49–63.[CrossRef]
    [Google Scholar]
  57. Kiel, M. J., Yilmaz, Ö. H., Iwashita, T., Yilmaz, O. H., Terhorst, C. & Morrison, S. J. ( 2005; ). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121.[CrossRef]
    [Google Scholar]
  58. Kimura, A., Tosaka, K. & Nakao, T. ( 1975; ). Measles rash. I. Light and electron microscopic study of skin eruptions. Arch Virol 47, 295–307.[CrossRef]
    [Google Scholar]
  59. Kobune, F., Sakata, H. & Sugiura, A. ( 1990; ). Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J Virol 64, 700–705.
    [Google Scholar]
  60. Kobune, F., Takahashi, H., Terao, K. & 7 other authors ( 1996; ). Nonhuman primate models of measles. Lab Anim Sci 46, 315–320.
    [Google Scholar]
  61. Kouomou, D. W. & Wild, T. F. ( 2002; ). Adaptation of wild-type measles virus to tissue culture. J Virol 76, 1505–1509.[CrossRef]
    [Google Scholar]
  62. Laine, D., Trescol-Biémont, M.-C., Longhi, S. & 8 other authors ( 2003; ). Measles virus (MV) nucleoprotein binds to a novel cell surface receptor distinct from FcγRII via its C-terminal domain: role in MV-induced immunosuppression. J Virol 77, 11332–11346.[CrossRef]
    [Google Scholar]
  63. Langedijk, J. P. M., Daus, F. J. & van Oirschot, J. T. ( 1997; ). Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. J Virol 71, 6155–6167.
    [Google Scholar]
  64. Lawrence, D. M. P., Patterson, C. E., Gales, T. L., D'Orazio, J. L., Vaughn, M. M. & Rall, G. F. ( 2000; ). Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. J Virol 74, 1908–1918.[CrossRef]
    [Google Scholar]
  65. Lecouturier, V., Fayolle, J., Caballero, M., Carabaña, J., Celma, M. L., Fernandez-Muñoz, R., Wild, T. F. & Buckland, R. ( 1996; ). Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. J Virol 70, 4200–4204.
    [Google Scholar]
  66. Li, L. & Qi, Y. ( 2002; ). A novel amino acid position in hemagglutinin glycoprotein of measles virus is responsible for hemadsorption and CD46 binding. Arch Virol 147, 775–786.[CrossRef]
    [Google Scholar]
  67. Liszewski, M. K., Post, T. W. & Atkinson, J. P. ( 1991; ). Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol 9, 431–455.[CrossRef]
    [Google Scholar]
  68. Manchester, M., Valsamakis, A., Kaufman, R., Liszewski, M. K., Alvarez, J., Atkinson, J. P., Lublin, D. M. & Oldstone, M. B. A. ( 1995; ). Measles virus and C3 binding sites are distinct on membrane cofactor protein (CD46). Proc Natl Acad Sci U S A 92, 2303–2307.[CrossRef]
    [Google Scholar]
  69. Manchester, M., Eto, D. S., Valsamakis, A., Liton, P. B., Fernandez-Muñoz, R., Rota, P. A., Bellini, W. J., Forthal, D. N. & Oldstone, M. B. A. ( 2000; ). Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 74, 3967–3974.[CrossRef]
    [Google Scholar]
  70. Marie, J. C., Kehren, J., Trescol-Biémont, M.-C. & 8 other authors ( 2001; ). Mechanism of measles virus-induced suppression of inflammatory immune responses. Immunity 14, 69–79.[CrossRef]
    [Google Scholar]
  71. Marie, J. C., Astier, A. L., Rivailler, P., Rabourdin-Combe, C., Wild, T. F. & Horvat, B. ( 2002; ). Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell-induced inflammation. Nat Immunol 3, 659–666.
    [Google Scholar]
  72. Massé, N., Barrett, T., Muller, C. P., Wild, T. F. & Buckland, R. ( 2002; ). Identification of a second major site for CD46 binding in the hemagglutinin protein from a laboratory strain of measles virus (MV): potential consequences for wild-type MV infection. J Virol 76, 13034–13038.[CrossRef]
    [Google Scholar]
  73. Massé, N., Ainouze, M., Néel, B., Wild, T. F., Buckland, R. & Langedijk, J. P. M. ( 2004; ). Measles virus (MV) hemagglutinin: evidence that attachment sites for MV receptors SLAM and CD46 overlap on the globular head. J Virol 78, 9051–9063.[CrossRef]
    [Google Scholar]
  74. Mavaddat, N., Mason, D. W., Atkinson, P. D. & 7 other authors ( 2000; ). Signaling lymphocytic activation molecule (CDw150) is homophilic but self-associates with very low affinity. J Biol Chem 275, 28100–28109.
    [Google Scholar]
  75. McChesney, M. B., Miller, C. J., Rota, P. A., Zhu, Y.-D., Antipa, L., Lerche, N. W., Ahmed, R. & Bellini, W. J. ( 1997; ). Experimental measles. I. Pathogenesis in the normal and the immunized host. Virology 233, 74–84.[CrossRef]
    [Google Scholar]
  76. Minagawa, H., Tanaka, K., Ono, N., Tatsuo, H. & Yanagi, Y. ( 2001; ). Induction of the measles virus receptor SLAM (CD150) on monocytes. J Gen Virol 82, 2913–2917.
    [Google Scholar]
  77. Miyajima, N., Takeda, M., Tashiro, M., Hashimoto, K., Yanagi, Y., Nagata, K. & Takeuchi, K. ( 2004; ). Cell tropism of wild-type measles virus is affected by amino acid substitutions in the P, V and M proteins, or by a truncation in the C protein. J Gen Virol 85, 3001–3006.[CrossRef]
    [Google Scholar]
  78. Mrkic, B., Pavlovic, J., Rülicke, T., Volpe, P., Buchholz, C. J., Hourcade, D., Atkinson, J. P., Aguzzi, A. & Cattaneo, R. ( 1998; ). Measles virus spread and pathogenesis in genetically modified mice. J Virol 72, 7420–7427.
    [Google Scholar]
  79. Nagai, Y. & Kato, A. ( 2004; ). Accessory genes of the paramyxoviridae, a large family of nonsegmented negative-strand RNA viruses, as a focus of active investigation by reverse genetics. Curr Top Microbiol Immunol 283, 197–248.
    [Google Scholar]
  80. Nakamura, T., Peng, K.-W., Harvey, M., Greiner, S., Lorimer, I. A. J., James, C. D. & Russell, S. J. ( 2005; ). Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol 23, 209–214.[CrossRef]
    [Google Scholar]
  81. Naniche, D., Wild, T. F., Rabourdin-Combe, C. & Gerlier, D. ( 1992; ). A monoclonal antibody recognizes a human cell surface glycoprotein involved in measles virus binding. J Gen Virol 73, 2617–2624.[CrossRef]
    [Google Scholar]
  82. Naniche, D., Varior-Krishnan, G., Cervoni, F., Wild, T. F., Rossi, B., Rabourdin-Combe, C. & Gerlier, D. ( 1993; ). Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67, 6025–6032.
    [Google Scholar]
  83. Naniche, D., Yeh, A., Eto, D., Manchester, M., Friedman, R. M. & Oldstone, M. B. A. ( 2000; ). Evasion of host defense by measles virus: wild-type measles virus infection interferes with induction of alpha/beta interferon production. J Virol 74, 7478–7484.[CrossRef]
    [Google Scholar]
  84. Nichols, K. E., Ma, C. S., Cannons, J. L., Schwartzberg, P. L. & Tangye, S. G. ( 2005; ). Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev 203, 180–199.[CrossRef]
    [Google Scholar]
  85. Nielsen, L., Blixenkrone-Møller, M., Thylstrup, M., Hansen, N. J. V. & Bolt, G. ( 2001; ). Adaptation of wild-type measles virus to CD46 receptor usage. Arch Virol 146, 197–208.[CrossRef]
    [Google Scholar]
  86. Ohno, S., Ono, N., Takeda, M., Takeuchi, K. & Yanagi, Y. ( 2004; ). Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. J Gen Virol 85, 2991–2999.[CrossRef]
    [Google Scholar]
  87. Ohno, S., Seki, F., Ono, N. & Yanagi, Y. ( 2003; ). Histidine at position 61 and its adjacent amino acid residues are critical for the ability of SLAM (CD150) to act as a cellular receptor for measles virus. J Gen Virol 84, 2381–2388.[CrossRef]
    [Google Scholar]
  88. Ono, N., Tatsuo, H., Hidaka, Y., Aoki, T., Minagawa, H. & Yanagi, Y. ( 2001a; ). Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75, 4399–4401.[CrossRef]
    [Google Scholar]
  89. Ono, N., Tatsuo, H., Tanaka, K., Minagawa, H. & Yanagi, Y. ( 2001b; ). V domain of human SLAM (CDw150) is essential for its function as a measles virus receptor. J Virol 75, 1594–1600.[CrossRef]
    [Google Scholar]
  90. Osunkoya, B. O., Ukaejiofo, E. O., Ajayi, O. & Akinyemi, A. A. ( 1990; ). Evidence that circulating lymphocytes act as vehicles or viraemia in measles. West Afr J Med 9, 35–39.
    [Google Scholar]
  91. Palosaari, H., Parisien, J.-P., Rodriguez, J. J., Ulane, C. M. & Horvath, C. M. ( 2003; ). STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 77, 7635–7644.[CrossRef]
    [Google Scholar]
  92. Parks, C. L., Lerch, R. A., Walpita, P., Wang, H.-P., Sidhu, M. S. & Udem, S. A. ( 2001; ). Comparison of predicted amino acid sequences of measles virus strains in the Edmonston vaccine lineage. J Virol 75, 910–920.[CrossRef]
    [Google Scholar]
  93. Patterson, J. B., Thomas, D., Lewicki, H., Billeter, M. A. & Oldstone, M. B. A. ( 2000; ). V and C proteins of measles virus function as virulence factors in vivo. Virology 267, 80–89.[CrossRef]
    [Google Scholar]
  94. Permar, S. R., Klumpp, S. A., Mansfield, K. G. & 10 other authors ( 2003; ). Role of CD8+ lymphocytes in control and clearance of measles virus infection of rhesus monkeys. J Virol 77, 4396–4400.[CrossRef]
    [Google Scholar]
  95. Poste, G. ( 1971; ). The growth and cytopathogenicity of virulent and attenuated strains of canine distemper virus in dog and ferret macrophages. J Comp Pathol 81, 49–54.[CrossRef]
    [Google Scholar]
  96. Radecke, F. & Billeter, M. A. ( 1996; ). The nonstructural C protein is not essential for multiplication of Edmonston B strain measles virus in cultured cells. Virology 217, 418–421.[CrossRef]
    [Google Scholar]
  97. Reutter, G. L., Cortese-Grogan, C., Wilson, J. & Moyer, S. A. ( 2001; ). Mutations in the measles virus C protein that up regulate viral RNA synthesis. Virology 285, 100–109.[CrossRef]
    [Google Scholar]
  98. Rima, B. K. & Duprex, W. P. ( 2006; ). Morbilliviruses and human disease. J Pathol 208, 199–214.[CrossRef]
    [Google Scholar]
  99. Rima, B. K., Earle, J. A. P., Baczko, K. & 7 other authors ( 1997; ). Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J Gen Virol 78, 97–106.
    [Google Scholar]
  100. Sakaguchi, M., Yoshikawa, Y., Yamanouchi, K., Sata, T., Nagashima, K. & Takeda, K. ( 1986; ). Growth of measles virus in epithelial and lymphoid tissues of cynomolgus monkeys. Microbiol Immunol 30, 1067–1073.[CrossRef]
    [Google Scholar]
  101. Santiago, C., Björling, E., Stehle, T. & Casasnovas, J. M. ( 2002; ). Distinct kinetics for binding of the CD46 and SLAM receptors to overlapping sites in the measles virus hemagglutinin protein. J Biol Chem 277, 32294–32301.[CrossRef]
    [Google Scholar]
  102. Schlender, J., Schnorr, J.-J., Spielhofer, P., Cathomen, T., Cattaneo, R., Billeter, M. A., ter Meulen, V. & Schneider-Schaulies, S. ( 1996; ). Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro. Proc Natl Acad Sci U S A 93, 13194–13199.[CrossRef]
    [Google Scholar]
  103. Schlender, J., Hornung, V., Finke, S. & 7 other authors ( 2005; ). Inhibition of Toll-like receptor 7- and 9-mediated alpha/beta interferon production in human plasmacytoid dendritic cells by respiratory syncytial virus and measles virus. J Virol 79, 5507–5515.[CrossRef]
    [Google Scholar]
  104. Schneider, H., Kaelin, K. & Billeter, M. A. ( 1997; ). Recombinant measles viruses defective for RNA editing and V protein synthesis are viable in cultured cells. Virology 227, 314–322.[CrossRef]
    [Google Scholar]
  105. Schneider, U., Bullough, F., Vongpunsawad, S., Russell, S. J. & Cattaneo, R. ( 2000; ). Recombinant measles viruses efficiently entering cells through targeted receptors. J Virol 74, 9928–9936.[CrossRef]
    [Google Scholar]
  106. Schneider, U., von Messling, V., Devaux, P. & Cattaneo, R. ( 2002; ). Efficiency of measles virus entry and dissemination through different receptors. J Virol 76, 7460–7467.[CrossRef]
    [Google Scholar]
  107. Schneider-Schaulies, S. & Dittmer, U. ( 2006; ). Silencing T cells or T-cell silencing: concepts in virus-induced immunosuppression. J Gen Virol 87, 1423–1438.[CrossRef]
    [Google Scholar]
  108. Schneider-Schaulies, J., Schnorr, J.-J., Brinckmann, U., Dunster, L. M., Baczko, K., Liebert, U. G., Schneider-Schaulies, S. & ter Meulen, V. ( 1995; ). Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proc Natl Acad Sci U S A 92, 3943–3947.[CrossRef]
    [Google Scholar]
  109. Schnorr, J.-J., Dunster, L. M., Nanan, R., Schneider-Schaulies, J., Schneider-Schaulies, S. & ter Meulen, V. ( 1995; ). Measles virus-induced down-regulation of CD46 is associated with enhanced sensitivity to complement-mediated lysis of infected cells. Eur J Immunol 25, 976–984.[CrossRef]
    [Google Scholar]
  110. Seki, F., Ono, N., Yamaguchi, R. & Yanagi, Y. ( 2003; ). Efficient isolation of wild strains of canine distemper virus in Vero cells expressing canine SLAM (CD150) and their adaptability to marmoset B95a cells. J Virol 77, 9943–9950.[CrossRef]
    [Google Scholar]
  111. Seki, F., Takeda, M., Minagawa, H. & Yanagi, Y. ( 2006; ). Recombinant wild-type measles virus containing a single N481Y substitution in its haemagglutinin cannot use receptor CD46 as efficiently as that having the haemagglutinin of the Edmonston laboratory strain. J Gen Virol 87, 1643–1648.[CrossRef]
    [Google Scholar]
  112. Shaffer, J. A., Bellini, W. J. & Rota, P. A. ( 2003; ). The C protein of measles virus inhibits the type I interferon response. Virology 315, 389–397.[CrossRef]
    [Google Scholar]
  113. Shibahara, K., Hotta, H., Katayama, Y. & Homma, M. ( 1994; ). Increased binding activity of measles virus to monkey red blood cells after long-term passage in Vero cell cultures. J Gen Virol 75, 3511–3516.[CrossRef]
    [Google Scholar]
  114. Shingai, M., Ayata, M., Ishida, H., Matsunaga, I., Katayama, Y., Seya, T., Tatsuo, H., Yanagi, Y. & Ogura, H. ( 2003; ). Receptor use by vesicular stomatitis virus pseudotypes with glycoproteins of defective variants of measles virus isolated from brains of patients with subacute sclerosing panencephalitis. J Gen Virol 84, 2133–2143.[CrossRef]
    [Google Scholar]
  115. Shingai, M., Inoue, N., Okuno, T. & 10 other authors ( 2005; ). Wild-type measles virus infection in human CD46/CD150-transgenic mice: CD11c-positive dendritic cells establish systemic viral infection. J Immunol 175, 3252–3261.[CrossRef]
    [Google Scholar]
  116. Sidorenko, S. P. & Clark, E. A. ( 1993; ). Characterization of a cell surface glycoprotein IPO-3, expressed on activated human B and T lymphocytes. J Immunol 151, 4614–4624.
    [Google Scholar]
  117. Suryanarayana, K., Baczko, K., ter Meulen, V. & Wagner, R. R. ( 1994; ). Transcription inhibition and other properties of matrix proteins expressed by M genes cloned from measles viruses and diseased human brain tissue. J Virol 68, 1532–1543.
    [Google Scholar]
  118. Tahara, M., Takeda, M. & Yanagi, Y. ( 2005; ). Contributions of matrix and large protein genes of the measles virus Edmonston strain to growth in cultured cells as revealed by recombinant viruses. J Virol 79, 15218–15225.[CrossRef]
    [Google Scholar]
  119. Takasu, T., Mgone, J. M., Mgone, C. S. & 12 other authors ( 2003; ). A continuing high incidence of subacute sclerosing panencephalitis (SSPE) in the Eastern Highlands of Papua New Guinea. Epidemiol Infect 131, 887–898.[CrossRef]
    [Google Scholar]
  120. Takeda, M., Kato, A., Kobune, F., Sakata, H., Li, Y., Shioda, T., Sakai, Y., Asakawa, M. & Nagai, Y. ( 1998; ). Measles virus attenuation associated with transcriptional impediment and a few amino acid changes in the polymerase and accessory proteins. J Virol 72, 8690–8696.
    [Google Scholar]
  121. Takeuchi, K., Miyajima, N., Kobune, F. & Tashiro, M. ( 2000; ). Comparative nucleotide sequence analyses of the entire genomes of B95a cell-isolated and Vero cell-isolated measles viruses from the same patient. Virus Genes 20, 253–257.[CrossRef]
    [Google Scholar]
  122. Takeuchi, K., Takeda, M., Miyajima, N., Kobune, F., Tanabayashi, K. & Tashiro, M. ( 2002; ). Recombinant wild-type and Edmonston strain measles viruses bearing heterologous H proteins: role of H protein in cell fusion and host cell specificity. J Virol 76, 4891–4900.[CrossRef]
    [Google Scholar]
  123. Takeuchi, K., Kadota, S.-I., Takeda, M., Miyajima, N. & Nagata, K. ( 2003a; ). Measles virus V protein blocks interferon (IFN)-α/β but not IFN-γ signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett 545, 177–182.[CrossRef]
    [Google Scholar]
  124. Takeuchi, K., Miyajima, N., Nagata, N., Takeda, M. & Tashiro, M. ( 2003b; ). Wild-type measles virus induces large syncytium formation in primary human small airway epithelial cells by a SLAM(CD150)-independent mechanism. Virus Res 94, 11–16.[CrossRef]
    [Google Scholar]
  125. Takeuchi, K., Takeda, M., Miyajima, N., Ami, Y., Nagata, N., Suzaki, Y., Shahnewaz, J., Kadota, S. & Nagata, K. ( 2005; ). Stringent requirement for the C protein of wild-type measles virus for growth both in vitro and in macaques. J Virol 79, 7838–7844.[CrossRef]
    [Google Scholar]
  126. Tanaka, K., Xie, M. & Yanagi, Y. ( 1998; ). The hemagglutinin of recent measles virus isolates induces cell fusion in a marmoset cell line, but not in other CD46-positive human and monkey cell lines, when expressed together with the F protein. Arch Virol 143, 213–225.[CrossRef]
    [Google Scholar]
  127. Tanaka, K., Minagawa, H., Xie, M.-F. & Yanagi, Y. ( 2002; ). The measles virus hemagglutinin downregulates the cellular receptor SLAM (CD150). Arch Virol 147, 195–203.[CrossRef]
    [Google Scholar]
  128. Taqi, A. M., Abdurrahman, M. B., Yakubu, A. M. & Fleming, A. F. ( 1981; ). Regression of Hodgkin's disease after measles. Lancet i, 1112.
    [Google Scholar]
  129. Tatsuo, H., Okuma, K., Tanaka, K., Ono, N., Minagawa, H., Takade, A., Matsuura, Y. & Yanagi, Y. ( 2000a; ). Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. J Virol 74, 4139–4145.[CrossRef]
    [Google Scholar]
  130. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. ( 2000b; ). SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897.[CrossRef]
    [Google Scholar]
  131. Tatsuo, H., Ono, N. & Yanagi, Y. ( 2001; ). Morbilliviruses use signaling lymphocyte activation molecules (CD150) as cellular receptors. J Virol 75, 5842–5850.[CrossRef]
    [Google Scholar]
  132. Tober, C., Seufert, M., Schneider, H., Billeter, M. A., Johnston, I. C. D., Niewiesk, S., ter Meulen, V. & Schneider-Schaulies, S. ( 1998; ). Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis. J Virol 72, 8124–8132.
    [Google Scholar]
  133. Valsamakis, A., Schneider, H., Auwaerter, P. G., Kaneshima, H., Billeter, M. A. & Griffin, D. E. ( 1998; ). Recombinant measles viruses with mutations in the C, V, or F gene have altered growth phenotypes in vivo. J Virol 72, 7754–7761.
    [Google Scholar]
  134. Vandevelde, M. & Zurbriggen, A. ( 1995; ). The neurobiology of canine distemper virus infection. Vet Microbiol 44, 271–280.[CrossRef]
    [Google Scholar]
  135. Veillette, A. ( 2006; ). Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol 6, 56–66.[CrossRef]
    [Google Scholar]
  136. Vincent, S., Spehner, D., Manié, S., Delorme, R., Drillien, R. & Gerlier, D. ( 1999; ). Inefficient measles virus budding in murine L.CD46 fibroblasts. Virology 265, 185–195.[CrossRef]
    [Google Scholar]
  137. Vincent, S., Tigaud, I., Schneider, H., Buchholz, C. J., Yanagi, Y. & Gerlier, D. ( 2002; ). Restriction of measles virus RNA synthesis by a mouse host cell line: trans-complementation by polymerase components or a human cellular factor(s). J Virol 76, 6121–6130.[CrossRef]
    [Google Scholar]
  138. Vongpunsawad, S., Oezgun, N., Braun, W. & Cattaneo, R. ( 2004; ). Selectively receptor-blind measles viruses: identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J Virol 78, 302–313.[CrossRef]
    [Google Scholar]
  139. von Messling, V., Springfeld, C., Devaux, P. & Cattaneo, R. ( 2003; ). A ferret model of canine distemper virus virulence and immunosuppression. J Virol 77, 12579–12591.[CrossRef]
    [Google Scholar]
  140. von Messling, V., Milosevic, D. & Cattaneo, R. ( 2004; ). Tropism illuminated: lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system. Proc Natl Acad Sci U S A 101, 14216–14221.[CrossRef]
    [Google Scholar]
  141. von Messling, V., Oezguen, N., Zheng, Q., Vongpunsawad, S., Braun, W. & Cattaneo, R. ( 2005; ). Nearby clusters of hemagglutinin residues sustain SLAM-dependent canine distemper virus entry in peripheral blood mononuclear cells. J Virol 79, 5857–5862.[CrossRef]
    [Google Scholar]
  142. von Messling, V., Svitek, N. & Cattaneo, R. ( 2006; ). Receptor (SLAM [CD150]) recognition and the V protein sustain swift lymphocyte-based invasion of mucosal tissue and lymphatic organs by a morbillivirus. J Virol 80, 6084–6092.[CrossRef]
    [Google Scholar]
  143. von Pirquet, C. ( 1908; ). Das Verhalten der kutanen Tuberkulin-Reaktion während der Masern. Dtsch Med Wochenschr 34, 1297–1300 (in German).[CrossRef]
    [Google Scholar]
  144. Wang, N., Satoskar, A., Faubion, W. & 8 other authors ( 2004; ). The cell surface receptor SLAM controls T cell and macrophage functions. J Exp Med 199, 1255–1264.[CrossRef]
    [Google Scholar]
  145. Welstead, G. G., Iorio, C., Draker, R., Bayani, J., Squire, J., Vongpunsawad, S., Cattaneo, R. & Richardson, C. D. ( 2005; ). Measles virus replication in lymphatic cells and organs of CD150 (SLAM) transgenic mice. Proc Natl Acad Sci U S A 102, 16415–16420.[CrossRef]
    [Google Scholar]
  146. Witko, S. E., Kotash, C., Sidhu, M. S., Udem, S. A. & Parks, C. L. ( 2006; ). Inhibition of measles virus minireplicon-encoded reporter gene expression by V protein. Virology 348, 107–119.[CrossRef]
    [Google Scholar]
  147. Woelk, C. H., Jin, L., Holmes, E. C. & Brown, D. W. G. ( 2001; ). Immune and artificial selection in the haemagglutinin (H) glycoprotein of measles virus. J Gen Virol 82, 2463–2474.
    [Google Scholar]
  148. Xie, M.-F., Tanaka, K., Ono, N., Minagawa, H. & Yanagi, Y. ( 1999; ). Amino acid substitutions at position 481 differently affect the ability of the measles virus hemagglutionin to induce cell fusion in monkey and marmoset cells co-expressing the fusion protein. Arch Virol 144, 1689–1699.[CrossRef]
    [Google Scholar]
  149. Yanagi, Y., Ono, N., Tatsuo, H., Hashimoto, K. & Minagawa, H. ( 2002; ). Measles virus receptor SLAM (CD150). Virology 299, 155–161.[CrossRef]
    [Google Scholar]
  150. Yokota, S., Saito, H., Kubota, T., Yokosawa, N., Amano, K. & Fujii, N. ( 2003; ). Measles virus suppresses interferon-α signaling pathway: suppression of Jak1 phosphorylation and association of viral accessory proteins, C and V, with interferon-α receptor complex. Virology 306, 135–146.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82221-0
Loading
/content/journal/jgv/10.1099/vir.0.82221-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error