- Volume 73, Issue 2, 2023
Volume 73, Issue 2, 2023
- New Taxa
-
- Pseudomonadota
-
-
Sphingobium lignivorans sp. nov., isolated from river sediment downstream of a paper mill
More LessA bacterial isolate, B1D3AT, was isolated from river sediment collected from the Hiwassee River near Calhoun, TN, by enrichment culturing with a model 5–5′ lignin dimer, dehydrodivanillate, as its sole carbon source. B1D3AT was also shown to utilize several model lignin-derived monomers and dimers as sole carbon sources in a variety of minimal media. Cells were Gram-stain-negative, aerobic, motile, rod-shaped and formed yellow/cream-coloured colonies on rich agar. Optimal growth occurred at 30 °C, pH 7–8, and in the absence of NaCl. The major fatty acids of B1D3AT were C18 : 1 ω7c and C17 : 1 ω6c. The predominant hydroxy fatty acids were C14 : 0 2-OH and C15 : 0 2-OH. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidyldimethylethanolamine and sphingoglycolipid. B1D3AT contained spermidine as the only major polyamine. The major isoprenoid quinone was Q-10 with minor amounts of Q-9 and Q-11. The genomic DNA G+C content of B1D3AT was 65.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 49 core, universal genes defined by Clusters of Orthologous Groups gene families indicated that B1D3AT was a member of the genus Sphingobium . B1D3AT was most closely related to Sphingobium sp. SYK-6, with a 100 % 16S rRNA gene sequence similarity. B1D3AT showed 78.1–89.9 % average nucleotide identity and 19.5–22.2% digital DNA–DNA hybridization identity with other type strains from the genus Sphingobium . On the basis of phenotypic and genotypic properties and phylogenetic inference, strain B1D3AT should be classified as representing a novel species of the genus Sphingobium , for which the name Sphingobium lignivorans sp. nov. is proposed. The type strain is strain B1D3AT (ATCC TSD-279T=DSM 111877T).
-
-
-
Abyssibius alkaniclasticus gen. nov., sp. nov., a novel member of the family Rhodobacteraceae, isolated from the Mariana Trench
More LessA Gram-stain-negative bacterium with rod-shaped or irregular cells approximately 0.5–0.9×2.0–3.8 µm in size, designated as 960558T, was isolated from sediment sampled in the Mariana Trench. Strain 960558T grows at 4–37 °C (optimum, 28 °C), pH 6–7 (optimum, pH 7) and in the presence of 1–5 % (w/v) NaCl (optimum, 3 %). Strain 960558T utilizes tetradecane or hexadecane as a sole carbon and energy source, respectively. Phylogenetic trees based on 16S rRNA gene sequences and phylogenomic reconstruction revealed a close phylogenetic relationship between strain 960558T and members of the family Rhodobacteraceae by forming a separate branch within the type species of closely related genera. The validly published species that is most closely related to strain 960558T is Planktotalea lamellibrachiae JAM 119T, which has the highest 16S rRNA gene sequence similarity (93.47 %). Ubiquinone 10 is the predominant ubiquinone, while C16 : 0, 11-methyl C18 : 1 ω7c and C18 : 1 ω7c and/or C18 : 1 ω6c are the predominant fatty acids (>10 %). Additionally, phosphatidylglycerol, glycolipids, diphosphatidylglycerol, unidentified polar lipids and unidentified aminolipids are the major polar lipids. The DNA G+C content of strain 960558T is 61 %. Average nucleotide identity and digital DNA–DNA hybridization results of strain 960558T with other type strains are <70.2 and 22.1 %, respectively. Based on its phylogenetic, chemotaxonomic and other phenotypic properties, strain 960558T is considered to represent a novel genus and species within the family Rhodobacteraceae , for which the name Abyssibius alkaniclasticus gen. nov., sp. nov. is proposed. The type strain of Abyssibius alkaniclasticus is 960558T (=KCTC 82619T=MCCC 1K04727T).
-
-
-
Salipiger pentaromativorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from mangrove sediment
More LessPolycyclic aromatic hydrocarbons (PAHs) have been recognized as a potential health risk and are widespread in nature due to their intrinsic chemical stability and high recalcitrance to degradation. A taxonomic study was carried out on strain P9T, which was isolated from a PAH-degrading consortium, enriched from the mangrove sediment from Zhangzhou, PR China. The isolate was chemoheterotrophic, aerobic, Gram-stain-negative, short-rod shaped, and motile by one polar flagellum. Growth was observed at salinities from 0.5–6.0 % (optimum, 3 %), at pH 4–9 (optimum, pH 7) and at 10–41 °C (optimum, 25–30 °C). It did not synthesize bacteriochlorophyll a. Catalase and oxidase activities were positive. Acid was produced from starch, amygdalin, arbutin, cellobiose, d-fructose, maltose, d-mannitol, melezitose, melibiose, raffinose, d-ribose, sucrose, trehalose, d-xylose, aesculin ferric citrate, gentiobiose, glycogen, l-arabinose, l-rhamnose, methyl α-d-glucopyranoside, methyl β-d-xylopyranoside, N-acetylglucosamine and salicin, and weakly positive for d-arabitol, d-galactose, lactose, turanose and glycerol. Phylogenetic analysis revealed that strain P9T fell within the clade comprising the type strains of Salipiger species and formed an independent cluster with Salipiger profundus , which was distinct from other members of the family Rhodobacteraceae . The 16S rRNA gene sequence comparisons showed that strain P9T was most closely related to Salipiger bermudensis HTCC 260T (96.7 %), and other species of the genus Salipiger (95.7–94.2 %). Strain P9T had the highest digital DNA–DNA hybridization value with S. profundus CGMCC 1.12377T (25.0 %) and the highest average nucleotide identity (ANIb and ANIm) values with S. profundus CGMCC 1.12377T(80.3 and 85.8 %, respectively). The sole respiratory quinone was quinone 10. The dominant fatty acids were C18 : 1 ω7c (61.4 %), C16 : 0 (17.5 %) and C19 : 0 ω8c cyclo (7.6 %). The G+C content of the chromosomal DNA was 65.8 mol%. In the polar lipid profile, phospholipid, phosphatidylglycerol, aminolipid, glycolipid and phosphatidylethanolamine were the major compounds. Based on the phenotypic and phylogenetic data, strain P9T represents a novel species of the genus Salipiger , for which the name Salipiger pentaromativorans sp. nov. is proposed. The type strain is P9T (=CCTCC AB 209290T=LMG 25701T=MCCC 1F01055T).
-
-
-
Luteimonas galliterrae sp. nov., isolated from poultry farm soil
More LessStrain SX5T was isolated from the soil of a poultry farm in Shanxi Province, PR China. The isolate was a Gram-stain-negative, rod-shaped, non-flagellated, and yellow bacterium. Growth occurred at 20–37 °C (optimum, 28 °C), pH 6.0–10.0 (optimum, pH 8.0) and 0–1 % NaCl (optimum, 0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SX5T was related to members of the genus Luteimonas , and close to Luteimonas gilva H23T (97.9 %), Luteimonas cucumeris Y4T (97.9 %), Luteimonas aquatica RIB1-20T (96.8 %), Luteimonas notoginsengisoli SYP-B804T (96.4 %) and Luteimonas panaciterrae Gsoil 068T (96.1 %). The major cellular fatty acids of strain SX5T were iso-C16 : 0, iso-C17 : 1 ω9c, iso-C15 : 0 and iso-C11 : 0 3OH. The sole isoprenoid quinone was ubiquinone Q-8, and the major polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Genome analyses revealed that strain SX5T had a genome size of 3.6 Mbp with a G+C content of 65.7 mol% and contained abundant carbohydrate-active enzyme genes and three putative distinct biosynthetic gene clusters, suggesting that it may have great potential to degrade and utilize complex biological organic matter and produce special secondary metabolites. Comparative genomic analyses clearly separated strain SX5T from the known species of the genus Luteimonas based on average nucleotide identity and digital DNA–DNA hybridization values below the thresholds for species delineation. Based on its phenotypic, genotypic properties and phylogenetic inference, strain SX5T represents a novel species in the genus Luteimonas , for which the name Luteimonas galliterrae sp. nov. is proposed. The type strain is SX5T (=GDMCC 1.2162T=KCTC 82443T=JCM 34401T).
-
-
-
Sneathiella marina sp. nov., isolated from a sea anemone in the Western Pacific Ocean
More LessA novel marine bacterium designated strain PHK-P5T was isolated from a sea anemone (Actinostolidae sp. 1). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PHK-P5T belonged to the genus Sneathiella . The bacterium was Gram-stain-negative, aerobic, oxidase- and catalase- positive, oval- to rod-shaped, and motile. Growth was observed at pH 6.0–9.0, salinities of 2.0–9.0 % and temperatures of 4–37 °C. The G+C content of the chromosomal DNA was 49.2 %. The respiratory quinone was determined to be Q-10. The principal fatty acids of strain PHK-P5T were C19 : 0cyclo ω8c (25.19 %), C16 : 0 (22.76 %), summed feature 8 (C18 : 1 ω7c/ω6c; 16.14 %), C14 : 0 (8.81 %), C17 : 0cyclo (8.10 %), summed feature 2 (C12 : 0 aldehyde and/or unknown 10.928; 7.19 %) and C18 : 1 ω7c 11-methyl (5.03 %). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The average nucleotide identity and digital DNA–DNA hybridization values among the genomes of strain PHK-P5T and the reference strains were 68.7–70.9 % and 17.4–18.1 %, respectively. The combined genotypic and phenotypic data showed that strain PHK-P5T represents a novel species within the genus Sneathiella , for which the name Sneathiella marina sp. nov. is proposed, with the type strain PHK-P5T (=MCCC M21824T=KCTC 82924T).
-
-
-
Thermomonas paludicola sp. nov., isolated from a lotus wetland
More LessA Gram-stain-negative, aerobic, rod-shaped and motile bacterium, designated IMCC34681T, was isolated from a lotus wetland in the Republic of Korea. Cellular growth occurred at 10–37 °C (optimum, 30 °C), pH 6–9 (optimum, pH 7) and with 0–2 % (w/v) NaCl (optimum, 0.5 % NaCl). The results of 16S rRNA gene sequence analysis indicated that IMCC34681T represented a member of the genus Thermomonas , sharing 95.3–96.9 % similarities with type strains of species of the genus. The whole-genome sequence of IMCC34681T was 2.72 Mbp in size with 66.2 % DNA G+C content. The IMCC34681T genome shared the highest average nucleotide identity (ANI) value, 82.8 %, with that of Thermomonas brevis KACC 16975T among species of the genus Thermomonas , indicating that the strain represents a novel genomic species. The major respiratory quinone of the strain was ubiquinone-8 (Q-8) and the predominant cellular fatty acids were iso-C15 : 0 (25.7 %) and iso-C14 : 0 (20.8 %). The strain harboured diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified lipid as major fatty polar lipids. On the basis of the phylogenetic, phenotypic, chemotaxonomic and genomic characteristics, IMCC34681T was assigned to the genus Thermomonas as the type strain of a novel species, for which the name Thermomonas paludicola sp. nov. is proposed. The type strain is IMCC34681T (=KACC 21793T=NBRC 114635T).
-
-
-
Aliiroseovarius subalbicans sp. nov. and Aliiroseovarius sediminis sp. nov., isolated from marine sediment
More LessTwo novel strains (N1Y82T and N1F302T) were isolated from a marine sediment sample taken from the coastal zone of Weihai, PR China. Cells of the two strains were Gram-strain-negative, catalase-positive, oxidase-positive, non-motile and ovoid- to rod-shaped. Strain N1Y82T grew optimally at 16 °C, pH 7.5 and in the presence of 3.0 % (w/v) NaCl. Strain N1F302T grew optimally at 28 °C, pH 7.0–7.5 and in the presence of 2.0–2.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strains N1Y82T and N1F302T belonged to the genus Aliiroseovarius , and were mostly related to Aliiroseovarius sediminilitoris KCTC 23959T with sequence similarity of 96.5 and 97.1 %, respectively. For these two novel strains, C18 : 1 ω7c was the major fatty acid, ubiquinone 10 was the predominant respiratory quinone, and phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, one unidentified aminolipid and one unidentified phospholipid were the major polar lipids. The DNA G+C contents of strain N1Y82T and N1F302T were 61.3 and 59.0 %, respectively. Consequently, strains N1Y82T and N1F302T are considered to represent two novel species of the genus Aliiroseovarius , for which the names Aliiroseovarius subalbicans sp. nov. and Aliiroseovarius sediminis sp. nov. are proposed. The type strains are N1Y82T (=KCTC 82768T=MCCC 1H00524T) and N1F302T (=KCTC 82412T=MCCC 1H00525T), respectively.
-
-
-
Roseomonas acroporae sp. nov., isolated from coral Acropora digitifera
More LessA non-motile, rod-shaped, pink-pigmented bacterium NAR14T was isolated from coral Acropora digitifera from Daya Bay, Shenzhen, PR China. Cells were Gram-stain-negative, aerobic, catalase-positive and oxidase-negative. NAR14T grew with 0–6 % (w/v) NaCl (optimum, 2–4 %), at 10–41 °C (optimum, 28 °C) and at pH 4.0–9.5 (optimum, 5.0). The major respiratory quinone was Q-10. The predominant fatty acids (more than 10%) were summed feature 8 (65.6 %) and C16 : 0 (17.6%). The DNA G+C content of NAR14T was 73.6 %. The polar lipids of NAR14T comprised one diphosphatidylglycerol, one phosphatidylethanolamine, one phosphatidylglycerol, one phosphatidylcholine, one aminolipid and three unknown polar lipids. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that NAR14T formed a lineage within the genus Roseomonas of the family Acetobacteraceae , and it was distinct from the most closely related species Roseomonas wooponensis JCM 19527T and Roseomonas riguiloci JCM 17520T with the 16S rRNA gene sequence similarities of 94.61 and 93.98 %, respectively. Phenotypic characteristics (physiological, biochemical and chemotaxonomic) also supported the taxonomic novelty of this isolate. Thus, NAR14T is considered to represent a novel species within the genus Roseomonas , for which the name Roseomonas acroporae sp. nov. is proposed. The type strain is NAR14T (=KCTC 92174T = MCCC 1K07275T).
-
- Eukaryotic Micro-Organisms
-
-
Barnettozyma menglunensis f.a., sp. nov., a novel yeast species isolated from rotting wood
More LessA novel yeast species is described based on three strains isolated from rotting wood samples from Xishuangbanna Tropical Rainforest in Yunnan Province, PR China. Strain NYNU 1811121 was isolated in Menglun, Mengla, while strains NYNU 18982 and NYNU 181096 were recovered in Mengyang, Jinghong. Analysis of the sequences of the D1/D2 domain of the large subunit rRNA gene and the internal transcribed spacer (ITS) region (ITS1-5.8S–ITS2) revealed that the novel strains were closely related to the type strain of [Candida] sanyiensis, but with 6.9 % nucleotide substitutions in the D1/D2 domain and 8.2 % substitutions in the ITS region. The three novel strains can also be distinguished from C. sanyiensis in terms of the ability to assimilate trehalose and d-gluconate and to grow at 35 °C, as well as the inability to ferment glucose. Based on molecular analyses and phenotypic characteristics, the name Barnettozyma menglunensis f.a., sp. nov. is proposed with the holotype CBS 16011T (MycoBank 845375).
-
-
-
Moniliella zaluziensis sp. nov., a black yeast related to fruit trees of the Rosaceae family
More LessOur previous studies focused on the diversity of yeasts related to the aboveground parts of fruit trees, as well as the soil adjacent to these trees, located in the south-west of Slovakia. During these studies, we isolated two Moniliella strains: CCY 11-1-1T from the blossoms of a peach tree (Prunus persica) and CCY 11-1-2 from the soil adjacent to a pear tree (Pyrus communis), both found in the Malé Zálužie locality. The sequences of the D1/D2 domain of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region were identical in both strains. They differed only by two nucleotide substitutions in the segment of the gene of translation elongation factor one alpha (TEF-1α). Phylogenetic analysis demonstrated that strains CCY 11-1-1T and CCY 11-1-2 formed a separate species in the clade of insect-associated members of the genus Moniliella. The strains differed from the closest species Moniliella oedocephalis by 23 nucleotide substitutions and 12 indels in the D1/D2 domain, more than 6 % in the ITS region (31 nt and 25 indels) and by 44 nt in the segment of TEF-1α. Therefore, these two strains are recognized as belonging to a novel species, for which we have proposed the name Moniliella zaluziensis sp. nov., derived from the locality of their origin, Malé Zálužie. The type strain of M. zaluziensis sp. nov. is CCY 11-1-1T.
-
-
-
Aspergillus verrucosus sp. nov., a xerophilic species isolated from house dust and honey in Japan
More LessThree strains of a xerophilic Aspergillus species were isolated from house dust and honey in Japan. A molecular phylogenetic analysis based on the combined dataset for four regions (internal transcribed spacer rDNA, calmodulin, β-tubulin, and RNA polymerase II second largest subunit) revealed that the strains formed an independent lineage, sister to Aspergillus halophilicus classified in section Restricti. Morphological comparisons show that the strains differ from A. halophilicus in three aspects: (i) the size of cleistothecia, as well as the surface structure and size of ascospores, (ii) the ability to grow on Harrold’s agar and dichloran 18 % glycerol agar, and (iii) the lack of conidiophore formation on potato dextrose agar +20 % NaCl. These strains could be clearly distinguished from all known Aspergillus section Restricti species. Therefore, we consider it to be a novel species and propose the name Aspergillus verrucosus sp. nov. (NBRC 115547T).
-
-
-
Multiverruca sinensis gen. nov., sp. nov., a thermotolerant fungus isolated from soil in China
During a survey of thermotolerant fungi in China, three isolates were obtained from soil samples. Phylogenetic analysis of a combined internal transcribed spacer and large subunit dataset showed that these isolates belong to the same species, which form a well-separated lineage distinct from the other genera in Latoruaceae. Morphologically, the isolates are characterized by having globose and smooth conidiogenous cells, verruculose mycelium and cymbiform conidia. Combining the phylogenetic analyses and morphological characteristics, Multiverruca gen. nov. is proposed and introduced to accommodate a single new species, Multiverruca sinensis sp. nov. Detailed descriptions, illustrations and notes are provided for the new genus and species.
-
-
-
Hannaella floricola sp. nov., a novel basidiomycetous yeast species isolated from a flower of Lantana camara in Portugal
More LessDuring a survey of floricolous yeasts in Portugal, a basidiomycetous yeast representing a novel species in the genus Hannaella was isolated in Portugal from the flower of Lantana camara, an ornamental exotic species native to Central and South America. A combination of phylogenetic analyses of DNA barcode sequences used in yeast molecular systematics, namely the D1/D2 domain and the complete internal transcribed spacer (ITS) region supported the recognition of a new species of Hannaella, that we designate Hannaella floricola sp. nov. (ex-type strain PYCC 9191T=CBS 18097T). Although the assignment of the new species to the genus Hannaella was evident, the detection of its closest relatives appeared more problematic. Nevertheless, our analyses suggested that H. floricola sp. nov. belongs a clade that also includes H. coprosmae, H. oryzae and H. surugaensis, together four candidate novel species. In addition we provide the molecular identification of several unidentified strains whose D1/D2 and ITS sequences are available from GenBank.
-
- Evolution, Phylogeny and Biodiversity
-
-
-
Phylogenomic analysis of the Neocallimastigomycota: proposal of Caecomycetaceae fam. nov., Piromycetaceae fam. nov., and emended description of the families Neocallimastigaceae and Anaeromycetaceae
The anaerobic gut fungi (AGF) represent a coherent phylogenetic clade within the Mycota. Twenty genera have been described so far. Currently, the phylogenetic and evolutionary relationships between AGF genera remain poorly understood. Here, we utilized 52 transcriptomic datasets from 14 genera to resolve AGF inter-genus relationships using phylogenomics, and to provide a quantitative estimate (amino acid identity, AAI) for intermediate rank assignments. We identify four distinct supra-genus clades, encompassing all genera producing polyflagellated zoospores, bulbous rhizoids, the broadly circumscribed genus Piromyces, and the Anaeromyces and affiliated genera. We also identify the genus Khoyollomyces as the earliest evolving AGF genus. Concordance between phylogenomic outputs and RPB1 and D1/D2 LSU, but not RPB2, MCM7, EF1α or ITS1, phylogenies was observed. We combine phylogenomic analysis and AAI outputs with informative phenotypic traits to propose accommodating 14/20 AGF genera into four families: Caecomycetaceae fam. nov. (encompassing the genera Caecomyces and Cyllamyces), Piromycetaceae fam. nov. (encompassing the genus Piromyces), emend the description of the family Neocallimastigaceae to encompass the genera Neocallimastix, Orpinomyces, Pecoramyces, Feramyces, Ghazallomyces, Aestipascuomyces and Paucimyces, as well as the family Anaeromycetaceae to include the genera Oontomyces, Liebetanzomyces and Capellomyces in addition to Anaeromyces. We refrain from proposing families for the deeply branching genus Khoyollomyces and for genera with uncertain position (Buwchfawromyces, Joblinomyces, Tahromyces, Agriosomyces and Aklioshbomyces) pending availability of additional isolates and sequence data; and these genera are designated as ‘genera incertae sedis’ in the order Neocallimastigales. Our results establish an evolutionary-grounded Linnaean taxonomic framework for the AGF, provide quantitative estimates for rank assignments, and demonstrate the utility of RPB1 as an additional informative marker in Neocallimastigomycota taxonomy.
-
-
- ICSP Matters
-
-
-
Proposal to include the categories kingdom and domain in the International Code of Nomenclature of Prokaryotes
More LessObservations made after introduction of the phylum category into the International Code of Nomenclature of Prokaryotes (ICNP) indicate that the addition of a category should usually be conducted before informal names at that rank become widely used. It is thus investigated whether it would be beneficial to add further categories. An extrapolation from the number of names validly published under the ICNP at the distinct principal categories was conducted. This extrapolation indicated that two principal ranks above phylum rank would also harbour validly published names if the according categories were covered by the ICNP. The appropriate categories would be kingdom and domain, regarded as separate principal ranks. The benefit from introducing these ranks is confirmed by analysing the previous taxonomic activity above phylum level and the nomenclatural problems associated with this activity. An etymological examination of the way names of taxa above genus level are formed under distinct codes of nomenclature provides hints for implementing additional categories. According emendations of the ICNP are proposed to include kingdom and domain as a means of further stabilizing prokaryotic nomenclature.
-
-
Volumes and issues
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)