1887

Abstract

During a survey of thermotolerant fungi in China, three isolates were obtained from soil samples. Phylogenetic analysis of a combined internal transcribed spacer and large subunit dataset showed that these isolates belong to the same species, which form a well-separated lineage distinct from the other genera in Latoruaceae. Morphologically, the isolates are characterized by having globose and smooth conidiogenous cells, verruculose mycelium and cymbiform conidia. Combining the phylogenetic analyses and morphological characteristics, gen. nov. is proposed and introduced to accommodate a single new species, sp. nov. Detailed descriptions, illustrations and notes are provided for the new genus and species.

Funding
This study was supported by the:
  • Construction Program of Biology First-class Discipline in Guizhou (Award GNYL [2017] 009)
    • Principle Award Recipient: Yan-FengHan
  • “Hundred” Talent Projects of Guizhou Province (Award Qian Ke He [2020] 6005)
    • Principle Award Recipient: Yan-FengHan
  • Key Areas of Research and Development Program of Guangdong Province (Award no. 2018B020205003)
    • Principle Award Recipient: Yan-FengHan
  • the National Natural Science Foundation of China (Award no. 32060011, 32160007, 32260003)
    • Principle Award Recipient: HanYan-Feng
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005734
2023-02-22
2024-05-19
Loading full text...

Full text loading...

References

  1. Liu JK, Hyde KD, Jeewon R, Phillips AJL, Maharachchikumbura SSN et al. Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Diversity 2017; 84:75–99 [View Article]
    [Google Scholar]
  2. Boonmee S, Calabon MS, Phookamsak R, Elgorban AM, Hyde KD. Triseptata sexualis gen. et sp. nov. in latoruaceae (pleosporales). Phytotaxa 2020; 447:252–264 [View Article]
    [Google Scholar]
  3. Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D. Outline of fungi and fungus-like taxa. Mycosphere 2020; 11:1060–1456 [View Article]
    [Google Scholar]
  4. Ariyawansa HA, Thambugala KM, Manamgoda DS, Jayawardena R, Camporesi E et al. Towards a natural classification and backbone tree for Pleosporaceae. Fungal Diversity 2015; 71:85–139 [View Article]
    [Google Scholar]
  5. Liu NG, Lin CG, Liu JK, Samarakoon MC, Hongsanan S et al. Lentimurisporaceae, a new pleosporalean family with divergence times estimatesNew Pleosporalean Family with Divergence Times Estimates. Cryptogamie, Mycologie 2018; 39:259–282 [View Article]
    [Google Scholar]
  6. Crous PW, Carris LM, Giraldo A, Groenewald JZ, Hawksworth DL et al. The genera of fungi - fixing the application of the type species of generic names - G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus 2015; 6:163–198 [View Article]
    [Google Scholar]
  7. Batista AC, Upadhyay HP. Soil fungi from northeast Brazil – I [IMUR publ.442]. Atas do Instituto de Micologia da Universidade do Recife 1965; 2:319–350
    [Google Scholar]
  8. Upadhyay HP. Soil fungi from North-East Brazil, II. Mycopathologia et Mycologia Applicata 1966; 30:276–286 [View Article]
    [Google Scholar]
  9. Sharma R, Sharma R, Crous PW. Matsushimamyces, a new genus of keratinophilic fungi from soil in central India. IMA Fungus 2015; 6:337–343 [View Article] [PubMed]
    [Google Scholar]
  10. Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana KWT et al. Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 2015; 75:27–274 [View Article]
    [Google Scholar]
  11. Crane JL, Miller AN. Studies in genera similar to Torula: Bahusaganda, Bahusandhika, Pseudotorula, and Simmonsiella gen. nov. IMA Fungus 2016; 7:29–45 [View Article] [PubMed]
    [Google Scholar]
  12. Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL, Madrid H et al. Notes for genera: Ascomycota. Fungal Diversity 2017; 86:1–594 [View Article]
    [Google Scholar]
  13. Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK, Maharachchikumbura SSN et al. Outline of ascomycota: 2017. Fungal Diversity 2018; 88:167–263 [View Article]
    [Google Scholar]
  14. Wang Y, Wang YR, Han YF, Liang ZQ. A new thermotolerant species of taifanglania. Mycosystem 2015; 34:345–349 [View Article]
    [Google Scholar]
  15. Zhang Z, Dong C, Chen W, Mou Q, Lu X et al. The enigmatic Thelebolaceae (Thelebolales, Leotiomycetes): one new genus Solomyces and five new species. Front Microbiol 2020; 11:572596 [View Article] [PubMed]
    [Google Scholar]
  16. Robert V, Vu D, Amor ABH, van de Wiele N, Brouwer C et al. MycoBank gearing up for new horizons. IMA Fungus 2013; 4:371–379 [View Article] [PubMed]
    [Google Scholar]
  17. Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G. MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 2004; 50:19–22
    [Google Scholar]
  18. Robert V, Stegehuis G, Stalpers J. The MycoBank engine and related databases; 2005 https://www. mycobank.org/
  19. Li X, Zhang ZY, Chen WH, Liang JD, Huang JZ et al. A new species of Arthrographis (Eremomycetaceae, Dothideomycetes), from the soil in Guizhou, China. Phytotaxa 2022; 538:175–181 [View Article]
    [Google Scholar]
  20. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990; 172:4238–4246 [View Article] [PubMed]
    [Google Scholar]
  21. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 2020; 13:1194–1202 [View Article] [PubMed]
    [Google Scholar]
  22. Zhang D, Gao F, Jakovlić I, Zou H, Zhang J et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 2020; 20:348–355 [View Article] [PubMed]
    [Google Scholar]
  23. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  24. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  25. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article] [PubMed]
    [Google Scholar]
  26. Posada D, Crandall KA. ModelTest: testing the model of DNA substitution. Bioinformatics 1998; 14:817–818 [View Article] [PubMed]
    [Google Scholar]
  27. Zhang Y, Liu F, Wu W, Cai L. A phylogenetic assessment and taxonomic revision of the thermotolerant hyphomycete genera Acrophialophora and Taifanglania. Mycologia 2015; 107:768–779 [View Article] [PubMed]
    [Google Scholar]
  28. Alastruey-Izquierdo A, Hoffmann K, de Hoog GS, Rodriguez-Tudela JL, Voigt K et al. Species recognition and clinical relevance of the zygomycetous genus Lichtheimia (syn. Absidia pro parte, Mycocladus). J Clin Microbiol 2010; 48:2154–2170 [View Article] [PubMed]
    [Google Scholar]
  29. Reisinger O, Kiffer E. Contribution to the fungal microflora of the Congo. IV. Polyschema congolensis sp. nov. taxonomy and ultrastructure. Trans Brit Mycol Soc 1974; 62:289–IN13
    [Google Scholar]
  30. Tiwari DP, Agrawal PD, Sutton BC. Polyschema variabilis sp. nov. from Indian soil. Trans Brit Mycol Soc 1977; 69:514–516 [View Article]
    [Google Scholar]
  31. Pandeya JPN, Saksena SB. A new species of Polyschema from Indian soil. Mycologia 1978; 70:876–879
    [Google Scholar]
  32. Ruiz RFC, Decock C, Saikawa M, Gené J, Guarro J. Polyschema obclaviformis sp. nov., and some new records of hyphomycetes from Cuba. Cryptogam, Mycol 2000; 21:215–220
    [Google Scholar]
  33. Mota RMA, Abarca GH, Ruíz RFC, Hernández CIB. Two new species of Polyschema and Vanakripa and other microfungi recorded from mangrove in Veracruz, Mexico. Mycotaxon 2008; 106:29–40
    [Google Scholar]
  34. Castañeda Ruíz RF, Iturriaga T, Minter DW, Abarca GH, Stadler M et al. Two new anamorphic fungi and some microfungi recorded from “El Ávila,” Venezuela. Mycotaxon 2009; 107:225–237 [View Article]
    [Google Scholar]
  35. Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu JK et al. Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 2017; 83:1–261 [View Article]
    [Google Scholar]
  36. Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL, Madrid H et al. Notes for genera: Ascomycota. Fungal Diversity 2017; 86:1–594 [View Article]
    [Google Scholar]
  37. Mouchacca J. Heat tolerant fungi and applied research: Addition to the previously treated group of strictly thermotolerant species. World J Microbiol Biotechnol 2007; 23:1755 [View Article] [PubMed]
    [Google Scholar]
  38. Zhang Y, Li DC. Five new records of thermotolerant fungi from China. Mycosystem 2013; 32:142–149
    [Google Scholar]
  39. Liang ZQ, Han YF, Chu HL. Three prospectively applicable species of Paecilomyces from soils in China. J Fungal Res 2006; 4:45–48
    [Google Scholar]
  40. Liang ZQ, Han YF, Chu HL. Studies on the genus Paecilomyces in China. IV. Two new species of Paecilomyces with monophialides. Mycotaxon 2006; 97:13–20
    [Google Scholar]
  41. Liang ZQ, Han YF, Chu HL. A new thermotolerant Paecilomyces species which produces laccase and a biform sporogenous structure. Fungal Divers 2007; 27:95–102
    [Google Scholar]
  42. Han YF, Liang ZQ, Chu HL. A new thermophilic species of Paecilomyces, Paecilomyces curticatenatus. Mycosystema 2007; 26:13–16
    [Google Scholar]
  43. Liang ZQ, Han YF, Chu HL, Fox RT. Studies on the genus Paecilomyces in China V. taifanglania gen. nov. for some monophialidic species. Fungal Divers 2009; 34:69–77
    [Google Scholar]
  44. Liang Y, Wang F, Li AN, Li DC. Thermotolerant fungi and their phylogenetic analyses based on rDNA-ITS sequences. Mycosystem 2011; 30:542–550
    [Google Scholar]
  45. Moustafa AWF, Abdel-Azeem AM. Thielavia gigaspora, a new thermotolerant ascomycete from Egypt. Microbiol Res 2008; 163:441–444 [View Article] [PubMed]
    [Google Scholar]
  46. Moretti MMS, Bocchini-Martins DA, Silva RD, Rodrigues A, Sette LD et al. Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Braz J Microbiol 2012; 43:1062–1071 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005734
Loading
/content/journal/ijsem/10.1099/ijsem.0.005734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error