1887

Abstract

A Gram-stain-negative bacterium with rod-shaped or irregular cells approximately 0.5–0.9×2.0–3.8 µm in size, designated as 960558, was isolated from sediment sampled in the Mariana Trench. Strain 960558 grows at 4–37 °C (optimum, 28 °C), pH 6–7 (optimum, pH 7) and in the presence of 1–5 % (w/v) NaCl (optimum, 3 %). Strain 960558 utilizes tetradecane or hexadecane as a sole carbon and energy source, respectively. Phylogenetic trees based on 16S rRNA gene sequences and phylogenomic reconstruction revealed a close phylogenetic relationship between strain 960558 and members of the family by forming a separate branch within the type species of closely related genera. The validly published species that is most closely related to strain 960558 is JAM 119, which has the highest 16S rRNA gene sequence similarity (93.47 %). Ubiquinone 10 is the predominant ubiquinone, while C, 11-methyl C 7 and C 7 and/or C 6 are the predominant fatty acids (>10 %). Additionally, phosphatidylglycerol, glycolipids, diphosphatidylglycerol, unidentified polar lipids and unidentified aminolipids are the major polar lipids. The DNA G+C content of strain 960558 is 61 %. Average nucleotide identity and digital DNA–DNA hybridization results of strain 960558 with other type strains are <70.2 and 22.1 %, respectively. Based on its phylogenetic, chemotaxonomic and other phenotypic properties, strain 960558 is considered to represent a novel genus and species within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is 960558 (=KCTC 82619=MCCC 1K04727).

Funding
This study was supported by the:
  • Science and Technology Research Program of Shanghai (Award 19DZ2282100)
    • Principle Award Recipient: Zhe-XueQuan
  • National Key Research and Development Program of China (Award 2018YFC0310600)
    • Principle Award Recipient: Zhe-XueQuan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005715
2023-02-15
2024-04-23
Loading full text...

Full text loading...

References

  1. Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. The family Rhodobacteraceae. In The Prokaryotes Berlin, Heidelberg: Springer; 2014 pp 439–512 [View Article]
    [Google Scholar]
  2. Liang KYH, Orata FD, Boucher YF, Case RJ. Roseobacters in a sea of poly- and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “Roseobacter Clade” Into a novel family, Roseobacteraceae fam. nov. Front Microbiol 2021; 12:1–24 [View Article]
    [Google Scholar]
  3. Imhoff JF, Truper HG, Pfennig N. Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria.”. Int J Syst Bacteriol 1984; 34:340–343 [View Article]
    [Google Scholar]
  4. Borsodi AK, Micsinai A, Kovács G, Tóth E, Schumann P et al. Pannonibacter phragmitetus gen. nov., sp. nov., a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake. Int J Syst Evol Microbiol 2003; 53:555–561 [View Article] [PubMed]
    [Google Scholar]
  5. Hou L, Zhang Y, Sun J, Xie X. Acuticoccus yangtzensis gen. nov., sp. nov., a novel member in the family Rhodobacteraceae, isolated from the surface water of the Yangtze Estuary. Curr Microbiol 2015; 70:176–182 [View Article] [PubMed]
    [Google Scholar]
  6. Liu P, Ding W, Lai Q, Liu R, Wei Y et al. Physiological and genomic features of Paraoceanicella profunda gen. nov., sp. nov., a novel piezophile isolated from deep seawater of the Mariana Trench. Microbiologyopen 2020; 9:e966 [View Article]
    [Google Scholar]
  7. Skerman V, Mcgowan V, Sneath P. Approved lists of bacterial names. Med J Aust 1980; 2:3–4
    [Google Scholar]
  8. Rothe B, Fischer A, Hirsch P, Sittig M, Stackebrandt E. The phylogenetic position of the budding bacteria Blastobacter aggregatus and Gemmobacter aquatilis gen., nov. sp. nov. Arch Microbiol 1987; 147:92–99 [View Article]
    [Google Scholar]
  9. Kim Y-O, Noh JK, Kim DG, Park IS, Park S et al. Paenihalocynthiibacter styelae gen. nov., sp. nov., isolated from stalked sea squirt Styela clava. Int J Syst Evol Microbiol 2021; 71:005085 [View Article]
    [Google Scholar]
  10. Hahnke S, Tindall BJ, Schumann P, Sperling M, Brinkhoff T et al. Planktotalea frisia gen. nov., sp. nov., isolated from the southern north sea. Int J Syst Evol Microbiol 2011; 62(7):1619–1624
    [Google Scholar]
  11. Rajasabapathy R, Mohandass C, Yoon J-H, Dastager SG, Liu Q et al. Nioella nitratireducens gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from Azorean Island. Antonie Van Leeuwenhoek 2015; 107:589–595 [View Article] [PubMed]
    [Google Scholar]
  12. Won SM, Park S, Park JM, Kim BC, Yoon JH. Pseudohalocynthiibacter aestuariivivens gen. nov., sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2015; 65:1509–1514 [View Article] [PubMed]
    [Google Scholar]
  13. Romanenko LA, Tanaka N, Svetashev VI, Kalinovskaya NI. Pacificibacter maritimus gen. nov., sp. nov., isolated from shallow marine sediment. Int J Syst Evol Microbiol 2011; 61:1375–1381 [View Article]
    [Google Scholar]
  14. Parte AC. LPSN - List of Prokaryotic Names with Standing in Nomenclature. Nucleic Acids Res 2014; 42:D613–6 [View Article]
    [Google Scholar]
  15. Wei TT, Zhang RY, Quan ZX. Methylophaga pinxianii sp. nov., isolated from the Mariana Trench. Int J Syst Evol Microbiol 2022; 72:005414 [View Article]
    [Google Scholar]
  16. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  19. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  23. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  24. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–72 [View Article] [PubMed]
    [Google Scholar]
  26. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75–90 [View Article] [PubMed]
    [Google Scholar]
  27. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014; 42:D199–205 [View Article] [PubMed]
    [Google Scholar]
  28. Zhang Z, Ma L, Abbasi AA, Raza RZ, Gao F et al. Database resources of the national genomics data center in 2020. Nucleic Acids Res 2020; 48:24–33
    [Google Scholar]
  29. Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K. Tranquillimonas alkanivorans gen. nov., sp. nov., an alkane-degrading bacterium isolated from Semarang Port in Indonesia. Int J Syst Evol Microbiol 2008; 58:2118–2121 [View Article]
    [Google Scholar]
  30. Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K. Tropicimonas isoalkanivorans gen. nov., sp. nov., a branched-alkane-degrading bacterium isolated from Semarang Port in Indonesia. Int J Syst Evol Microbiol 2009; 59:388–391 [View Article]
    [Google Scholar]
  31. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  32. Wei TT, He S, Quan ZX. Thalassolituus alkanivorans sp. nov., a hydrocarbon-utilizing bacterium isolated from the mariana trench. Int J Syst Evol Microbiol 2022; 72:005404
    [Google Scholar]
  33. Ilardi P, Fernández J, Avendaño-Herrera R. Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 2009; 59:3001–3005 [View Article] [PubMed]
    [Google Scholar]
  34. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  35. Fang D-B, Han J-R, Liu Y, Du Z-J. Seonamhaeicola marinus sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2017; 67:4857–4861 [View Article] [PubMed]
    [Google Scholar]
  36. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 2006; 5:2359–2367
    [Google Scholar]
  37. Chu C, Liu B, Lian Z, Zheng H, Chen C et al. Solirhodobacter olei gen. nov., sp. nov., a nonphotosynthetic bacterium isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2020; 70:582–588 [View Article]
    [Google Scholar]
  38. Sasser M. MIDI Technical Note 101: Identification of bacteria by gas chromatography of cellular fatty acids Newark, DE: MIDI; 1990
    [Google Scholar]
  39. Keddis R. Alkane oxidation in pure cultures and natural microbial communities from geothermal deep-sea environments: linking diversity and function PhD Thesis, The State University of New Jersey, USA; 2013
    [Google Scholar]
  40. Nogi Y, Nishi S, Koyama S. Planktotalealamellibrachiae sp. nov., isolated from a marine organism in Kagoshima Bay, Japan. Int J Syst Evol Microbiol 2017; 67:4785–4789 [View Article] [PubMed]
    [Google Scholar]
  41. Hahnke S, Tindall BJ, Schumann P, Sperling M, Brinkhoff T et al. Planktotalea frisia gen. nov., sp. nov., isolated from the southern North Sea. Int J Syst Evol Microbiol 2012; 62:1619–1624 [View Article]
    [Google Scholar]
  42. Baek K, Choi A, Lee YM, Lee HK, Cho JC. Planktotalea arctica sp. nov., isolated from Arctic seawater. Int J Syst Evol Microbiol 2017; 67:3501–3505 [View Article] [PubMed]
    [Google Scholar]
  43. Yang Q, Jiang Z, Zhou X, Zhang R, Wu Y et al. Nioella ostreopsis sp. nov., isolated from toxic dinoflagellate, Ostreopsis lenticularis. Int J Syst Evol Microbiol 2020; 70:759–765 [View Article]
    [Google Scholar]
  44. Liu Y, Du J, Lai Q, Dong C, Shao Z. Nioella sediminis sp. nov., isolated from surface sediment and emended description of the genus Nioella. Int J Syst Evol Microbiol 2017; 67:1271–1274 [View Article] [PubMed]
    [Google Scholar]
  45. Cha IT, Cho ES, Park JM, Yeh JY, Seo MJ. Nioella aestuarii sp. nov., of the family Rhodobacteraceae, isolated from tidal flat. Int J Syst Evol Microbiol 2017; 67:5205–5210 [View Article] [PubMed]
    [Google Scholar]
  46. Rajasabapathy R, Mohandass C, Yoon J-H, Dastager SG, Liu Q et al. Nioella nitratireducens gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from Azorean Island. Antonie Van Leeuwenhoek 2015; 107:589–595 [View Article]
    [Google Scholar]
  47. Sun X, Luo P, Li M. Paracoccus angustae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:3469–3475
    [Google Scholar]
  48. Gutierrez-Patricio S, Gonzalez-Pimentel JL, Miller AZ, Hermosin B, Saiz-Jimenez C et al. Paracoccus onubensis sp. nov., a novel alphaproteobacterium isolated from the wall of a show cave. Int J Syst Evol Microbiol 2021; 71:004942 [View Article]
    [Google Scholar]
  49. Dominguez-Moñino I, Jurado V, Hermosin B, Saiz-Jimenez C. Paracoccus cavernae sp. nov., isolated from a show cave. Int J Syst Evol Microbiol 2016; 66:2265–2270 [View Article]
    [Google Scholar]
  50. Zhang S, Gan L, Qin Q, Long X, Zhang Y et al. Paracoccusacridae sp. nov., isolated from the insect Acrida cinerea living in deserted cropland. Int J Syst Evol Microbiol 2016; 66:3492–3497 [View Article]
    [Google Scholar]
  51. Lee M, Woo SG, Park G, Kim MK. Paracoccus caeni sp. nov., isolated from sludge. Int J Syst Evol Microbiol 2011; 61:1968–1972 [View Article] [PubMed]
    [Google Scholar]
  52. Sheu SY, Hsieh TY, Young CC, Chen WM. Paracoccus fontiphilus sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2018; 68:2054–2060 [View Article] [PubMed]
    [Google Scholar]
  53. Hyeon JW, Kim KH, Jeong SE, Jeon CO. Pacificibacter aestuarii sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:3627–3632 [View Article] [PubMed]
    [Google Scholar]
  54. Park S, Kang CH, Park JM, Yoon JH. Aquimixticola soesokkakensis gen. nov., sp. nov., a novel lipolytic alphaproteobacterium isolated from the junction between the ocean and a freshwater spring, and reclassification of Roseovarius marinus as Pacificibacter marinus comb. nov. and emended description of the genus Pacificibacter. Antonie Van Leeuwenhoek 2014; 106:647–655 [View Article] [PubMed]
    [Google Scholar]
  55. Romanenko LA, Tanaka N, Svetashev VI, Kalinovskaya NI. Pacificibacter maritimus gen. nov., sp. nov., isolated from shallow marine sediment. Int J Syst Evol Microbiol 2011; 61:1375–1381 [View Article]
    [Google Scholar]
  56. Jung YT, Lee JS, Oh KH, Oh TK, Yoon JH. Roseovarius marinus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61:427–432 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005715
Loading
/content/journal/ijsem/10.1099/ijsem.0.005715
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error