1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped and motile bacterium, designated IMCC34681, was isolated from a lotus wetland in the Republic of Korea. Cellular growth occurred at 10–37 °C (optimum, 30 °C), pH 6–9 (optimum, pH 7) and with 0–2 % (w/v) NaCl (optimum, 0.5 % NaCl). The results of 16S rRNA gene sequence analysis indicated that IMCC34681 represented a member of the genus , sharing 95.3–96.9 % similarities with type strains of species of the genus. The whole-genome sequence of IMCC34681 was 2.72 Mbp in size with 66.2 % DNA G+C content. The IMCC34681 genome shared the highest average nucleotide identity (ANI) value, 82.8 %, with that of KACC 16975 among species of the genus , indicating that the strain represents a novel genomic species. The major respiratory quinone of the strain was ubiquinone-8 (Q-8) and the predominant cellular fatty acids were iso-C (25.7 %) and iso-C (20.8 %). The strain harboured diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified lipid as major fatty polar lipids. On the basis of the phylogenetic, phenotypic, chemotaxonomic and genomic characteristics, IMCC34681 was assigned to the genus as the type strain of a novel species, for which the name sp. nov. is proposed. The type strain is IMCC34681 (=KACC 21793=NBRC 114635).

Funding
This study was supported by the:
  • Inha University (Award na)
    • Principle Award Recipient: Jang-CheonCho
  • Nakdonggang National Institute of Biological Resources (Award na)
    • Principle Award Recipient: Jang-CheonCho
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005737
2023-02-24
2024-03-29
Loading full text...

Full text loading...

References

  1. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE et al. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek 2015; 107:467–485 [View Article]
    [Google Scholar]
  2. Christensen P, Cook FD. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Evol 1978; 28:367–393 [View Article]
    [Google Scholar]
  3. Kwon S-W, Kim B-Y, Weon H-Y, Baek Y-K, Go S-J. Arenimonas donghaensis gen. nov., sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 2007; 57:954–958 [View Article]
    [Google Scholar]
  4. Kim S-J, Ahn J-H, Weon H-Y, Hong S-B, Seok S-J et al. Chujaibacter soli gen. nov., sp. nov., isolated from soil. J Microbiol 2015; 53:592–597 [View Article]
    [Google Scholar]
  5. Chen W-M, Xie P-B, Tang S-L, Sheu S-Y. Coralloluteibacterium stylophorae gen. nov., sp. nov., a new member of the family Lysobacteraceae isolated from the reef-building coral Stylophora sp. Arch Microbiol 2018; 200:473–481 [View Article]
    [Google Scholar]
  6. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50 Pt 1:273–282 [View Article]
    [Google Scholar]
  7. Ziegler S, Waidner B, Itoh T, Schumann P, Spring S et al. Metallibacterium scheffleri gen. nov., sp. nov., an alkalinizing gammaproteobacterium isolated from an acidic biofilm. Int J Syst Evol Microbiol 2013; 63:1499–1504 [View Article]
    [Google Scholar]
  8. Kojima H, Tokizawa R, Fukui M. Mizugakiibacter sediminis gen. nov., sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2014; 64:3983–3987 [View Article]
    [Google Scholar]
  9. Wei Z, Wu T, Huang Y, Zhu G, Zhang Y et al. Pseudolysobacter antarcticus gen. nov., sp. nov., isolated from soil in Fildes Peninsula, Antarctica. Int J Syst Evol Microbiol 2020; 70:1861–1867 [View Article]
    [Google Scholar]
  10. Weerawongwiwat V, Kim J-H, Yoon J-H, Lee J-S, Sukhoom A et al. Pseudomarimonas arenosa gen. nov., sp. nov. isolated from marine sand. Int J Syst Evol Microbiol 2021; 71:005159 [View Article]
    [Google Scholar]
  11. Lee EM, Jeon CO, Choi I, Chang K-S, Kim C-J. Silanimonas lenta gen. nov., sp. nov., a slightly thermophilic and alkaliphilic gammaproteobacterium isolated from a hot spring. Int J Syst Evol Microbiol 2005; 55:385–389 [View Article]
    [Google Scholar]
  12. Palleroni NJ, Bradbury JF. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol 1993; 43:606–609 [View Article]
    [Google Scholar]
  13. Busse HJ, Kämpfer P, Moore ERB, Nuutinen J, Tsitko IV et al. Thermomonas haemolytica gen. nov., sp. nov., a γ-proteobacterium from kaolin slurry. Int J Syst Evol Microbiol 2002; 52:473–483 [View Article]
    [Google Scholar]
  14. Yu T-T, Zhou E-M, Yin Y-R, Yao J-C, Ming H et al. Vulcaniibacterium tengchongense gen. nov., sp. nov. isolated from a geothermally heated soil sample, and reclassification of Lysobacter thermophilus Wei et al. 2012 as Vulcaniibacterium thermophilum comb. nov. Antonie Van Leeuwenhoek 2013; 104:369–376 [View Article]
    [Google Scholar]
  15. Dowson W. On the systematic position and generic names of the Gram-negative bacterial plant pathogens. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 1939; 100:177–193
    [Google Scholar]
  16. Wells JM, Raju BC, Hung H-Y, Weisburg WG, Mandelco-Paul L et al. Xylella fastidiosa gen. nov., sp. nov: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int J Syst Evol 1987; 37:136–143 [View Article]
    [Google Scholar]
  17. Saddler G, Bradbury J. Family I. Xanthomonadaceae. Bergey’s Manual of Systematic Bacteriology,vol 2 (The Proteobacteria), Part B (The Gammaproteobacteria) Berlin & Heidelberg, Germany: Springer; 2005
    [Google Scholar]
  18. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  19. Mergaert J, Cnockaert MC, Swings J. Thermomonas fusca sp. nov. and Thermomonas brevis sp. nov., two mesophilic species isolated from a denitrification reactor with poly(ε-caprolactone) plastic granules as fixed bed, and emended description of the genus Thermomonas. Int J Syst Evol Microbiol 2003; 53:1961–1966 [View Article]
    [Google Scholar]
  20. Alves MP, Rainey FA, Nobre MF, da Costa MS. Thermomonas hydrothermalis sp. nov., a new slightly thermophilic γ-proteobacterium isolated from a hot spring in central Portugal. Syst Appl Microbiol 2003; 26:70–75 [View Article]
    [Google Scholar]
  21. Kim MK, Im W-T, In J-G, Kim S-H, Yang D-C. Thermomonas koreensis sp. nov., a mesophilic bacterium isolated from a ginseng field. Int J Syst Evol Microbiol 2006; 56:1615–1619 [View Article] [PubMed]
    [Google Scholar]
  22. Wang L, Zheng S, Wang D, Wang L, Wang G. Thermomonas carbonis sp. nov., isolated from the soil of a coal mine. Int J Syst Evol Microbiol 2014; 64:3631–3635 [View Article] [PubMed]
    [Google Scholar]
  23. Ju J-H, Kim J-S, Lee D-H, Jeon JH, Heo S-Y et al. Thermomonas aquatica sp. nov., isolated from an industrial wastewater treatment plant. Int J Syst Evol Microbiol 2019; 69:3399–3404 [View Article] [PubMed]
    [Google Scholar]
  24. Guo S-Z, Wu T, Zhu H-Z, Yan L, Liu Z-P et al. Niabella beijingensis sp. nov. and Thermomonas beijingensis sp. nov., two bacteria from constructed wetland. Int J Syst Evol Microbiol 2022; 72:005280 [View Article] [PubMed]
    [Google Scholar]
  25. Liu Z-T, Dai J-Y, Lian Z-H, Liu L, Xian W-D et al. Thermomonas flagellata sp. nov. and Thermomonas alba sp. nov., two novel members of the phylum Pseudomonadota isolated from hot spring sediments. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  26. Bodelier PLE, Dedysh SN. Microbiology of wetlands. Front Microbiol 2013; 4:79 [View Article] [PubMed]
    [Google Scholar]
  27. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  29. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  30. de Bruijn FJ. Handbook of Molecular Microbial Ecology I Hoboken, NJ, USA: John Wiley & Sons; 2011 pp 399–406
    [Google Scholar]
  31. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  33. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  34. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Biology 1971; 20:406–416 [View Article]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  36. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  37. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article]
    [Google Scholar]
  38. Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol 2022; 18:e1009802 [View Article] [PubMed]
    [Google Scholar]
  39. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  40. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  41. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  43. Kim J, Na S-I, Kim D, Chun J. UBCG2: Up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615 [View Article] [PubMed]
    [Google Scholar]
  44. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  45. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  46. Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY et al. CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 2013; 41:D348–52 [View Article] [PubMed]
    [Google Scholar]
  47. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  48. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020; 36:2251–2252 [View Article] [PubMed]
    [Google Scholar]
  49. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  50. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  51. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–W485 [View Article] [PubMed]
    [Google Scholar]
  52. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  53. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758 [View Article]
    [Google Scholar]
  54. Tindall BJ, Sikorski J, Smibert RA, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. eds Methods for Generaland Molecular Microbiology Third Edition Washington, DC, USA: American Society of Microbiology; 2007 pp 330–393 [View Article]
    [Google Scholar]
  55. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  56. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 1981; 51:129–134 [View Article] [PubMed]
    [Google Scholar]
  57. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101 Newark, DE: MIDI inc; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005737
Loading
/content/journal/ijsem/10.1099/ijsem.0.005737
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error