1887

Abstract

The anaerobic gut fungi (AGF) represent a coherent phylogenetic clade within the Mycota. Twenty genera have been described so far. Currently, the phylogenetic and evolutionary relationships between AGF genera remain poorly understood. Here, we utilized 52 transcriptomic datasets from 14 genera to resolve AGF inter-genus relationships using phylogenomics, and to provide a quantitative estimate (amino acid identity, AAI) for intermediate rank assignments. We identify four distinct supra-genus clades, encompassing all genera producing polyflagellated zoospores, bulbous rhizoids, the broadly circumscribed genus , and the and affiliated genera. We also identify the genus as the earliest evolving AGF genus. Concordance between phylogenomic outputs and RPB1 and D1/D2 LSU, but not RPB2, MCM7, EF1α or ITS1, phylogenies was observed. We combine phylogenomic analysis and AAI outputs with informative phenotypic traits to propose accommodating 14/20 AGF genera into four families: fam. nov. (encompassing the genera and ), fam. nov. (encompassing the genus ), emend the description of the family to encompass the genera , , , , , and , as well as the family to include the genera , and in addition to . We refrain from proposing families for the deeply branching genus and for genera with uncertain position (, , , and ) pending availability of additional isolates and sequence data; and these genera are designated as ‘genera incertae sedis’ in the order . Our results establish an evolutionary-grounded Linnaean taxonomic framework for the AGF, provide quantitative estimates for rank assignments, and demonstrate the utility of RPB1 as an additional informative marker in taxonomy.

Funding
This study was supported by the:
  • National Science Foundation (Award 2029478)
    • Principle Award Recipient: NohaH. Youssef
  • National Science Foundation (Award 2029478)
    • Principle Award Recipient: MostafaS. Elshahed
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005735
2023-02-24
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/2/ijsem005735.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005735&mimeType=html&fmt=ahah

References

  1. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 2014; 90:1–17 [View Article] [PubMed]
    [Google Scholar]
  2. Hanafy RA, Dagar SS, Griffith GW, Pratt CJ, Youssef NH et al. Taxonomy of the anaerobic gut fungi (Neocallimastigomycota): a review of classification criteria and description of current taxa. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  3. Elshahed MS, Hanafy RA, Cheng Y, Dagar SS, Edwards JE et al. Characterization and rank assignment criteria for the anaerobic fungi (Neocallimastigomycota). Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  4. Callaghan TM, Podmirseg SM, Hohlweck D, Edwards JE, Puniya AK et al. Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MC 2015; 9:11–28 [View Article]
    [Google Scholar]
  5. Hanafy RA, Johnson B, Youssef NH, Elshahed MS. Assessing anaerobic gut fungal diversity in herbivores using D1/D2 large ribosomal subunit sequencing and multi-year isolation. Environ Microbiol 2020; 22:3883–3908 [View Article] [PubMed]
    [Google Scholar]
  6. Wang X, Liu X, Groenewald JZ. Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China. Antonie van Leeuwenhoek 2017; 110:87–103 [View Article] [PubMed]
    [Google Scholar]
  7. Edwards JE, Hermes GDA, Kittelmann S, Nijsse B, Smidt H. Assessment of the accuracy of high-throughput sequencing of the ITS1 region of Neocallimastigomycota for community composition analysis. Front Microbiol 2019; 10:2370 [View Article] [PubMed]
    [Google Scholar]
  8. Stabel M, Schweitzer T, Haack K, Gorenflo P, Aliyu H et al. Isolation and biochemical characterization of six anaerobic fungal strains from zoo animal feces. Microorganisms 2021; 9:1655 [View Article] [PubMed]
    [Google Scholar]
  9. Choi J, Kim S-H. A genome tree of life for the fungi kingdom. Proc Natl Acad Sci 2017; 114:9391–9396 [View Article]
    [Google Scholar]
  10. Montoliu-Nerin M, Sánchez-García M, Bergin C, Kutschera VE, Johannesson H et al. In-depth phylogenomic analysis of arbuscular mycorrhizal fungi based on a comprehensive set of de novo genome assemblies. Front Fungal Biol 2021; 2: [View Article]
    [Google Scholar]
  11. Galindo LJ, López-García P, Torruella G, Karpov S, Moreira D. Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat Commun 2021; 12:4973 [View Article] [PubMed]
    [Google Scholar]
  12. Li Y, Steenwyk JL, Chang Y, Wang Y, James TY et al. A genome-scale phylogeny of the kingdom fungi. Curr Biol 2021; 31:1653–1665 [View Article] [PubMed]
    [Google Scholar]
  13. James TY, Stajich JE, Hittinger CT, Rokas A. Toward a fully resolved fungal tree of life. Annu Rev Microbiol 2020; 74:291–313 [View Article] [PubMed]
    [Google Scholar]
  14. Gostinčar C. Towards genomic criteria for delineating fungal species. J Fungi (Basel) 2020; 6:246 [View Article] [PubMed]
    [Google Scholar]
  15. Pornputtapong N, Acheampong DA, Patumcharoenpol P, Jenjaroenpun P, Wongsurawat T et al. KITSUNE: a tool for identifying empirically optimal k-mer length for alignment-free phylogenomic analysis. Front Bioeng Biotechnol 2020; 8:556413 [View Article] [PubMed]
    [Google Scholar]
  16. Gramaje D, Berlanas C, Martínez-Diz MDP, Diaz-Losada E, Antonielli L et al. Comparative genomic analysis of Dactylonectria torresensis strains from grapevine, soil and weed highlights potential mechanisms in pathogenicity and endophytic lifestyle. J Fungi (Basel) 2020; 6:255 [View Article] [PubMed]
    [Google Scholar]
  17. Li C, Guo Z, Zhou S, Han Q, Zhang M et al. Evolutionary and genomic comparisons of hybrid uninucleate and nonhybrid Rhizoctonia fungi. Commun Biol 2021; 4:201 [View Article] [PubMed]
    [Google Scholar]
  18. Steenwyk JL, Shen X-X, Lind AL, Goldman GH, Rokas A. A robust phylogenomic time tree for biotechnologically and medically important fungi in the genera Aspergillus and Penicillium. mBio 2019; 10:e00925-19 [View Article] [PubMed]
    [Google Scholar]
  19. Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 2019; 66:4–119 [View Article] [PubMed]
    [Google Scholar]
  20. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF et al. A higher-level phylogenetic classification of the fungi. Mycol Res 2007; 111:509–547 [View Article]
    [Google Scholar]
  21. Heath IB, Bauchop T, Skipp RA. Assignment of the rumen anaerobe Neocallimastix frontalis to the Spizellomycetales (Chytridiomycetes) on the basis of its polyflagellate zoospore ultrastructure. Can J Bot 1983; 61:295–307 [View Article]
    [Google Scholar]
  22. Li J, Heath IB, Packer L. The phylogenetic relationships of the anaerobic chytridiomycetous gut fungi (Neocallimasticaceae) and the Chytridiomycota. II. Cladistic analysis of structural data and description of Neocallimasticales ord.nov. Can J Bot 1993; 71:393–407 [View Article]
    [Google Scholar]
  23. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V et al. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 2006; 443:818–822
    [Google Scholar]
  24. Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M et al. High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Diversity 2018; 90:135–159 [View Article]
    [Google Scholar]
  25. Powell MJ, Letcher PM. Chytridiomycota, Monoblepharidomycota, and Neocallimastigomycota. In McLaughlin DJ, Spatafora JW. eds Systematics and Evolution Berlin, Heidelberg: Springer; 2014 pp 141–175 [View Article]
    [Google Scholar]
  26. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J et al. GenBank. Nucl Acids Res 2018; 46:D41–D47 [View Article]
    [Google Scholar]
  27. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucl Acids Res 2014; 42:D699–D704 [View Article] [PubMed]
    [Google Scholar]
  28. Dagar SS, Kumar S, Griffith GW, Edwards JE, Callaghan TM et al. A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biol 2015; 119:731–737 [View Article]
    [Google Scholar]
  29. Hanafy RA, Elshahed MS, Liggenstoffer AS, Griffith GW, Youssef NH. Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia 2017; 109:231–243 [View Article]
    [Google Scholar]
  30. Hanafy RA, Elshahed MS, Youssef NH. Feramyces austinii, gen. nov., sp. nov., an anaerobic gut fungus from rumen and fecal samples of wild Barbary sheep and fallow deer. Mycologia 2018; 110:513–525 [View Article]
    [Google Scholar]
  31. Hanafy RA, Youssef NH, Elshahed MS. Paucimyces polynucleatus gen. nov, sp. nov., a novel polycentric genus of anaerobic gut fungi from the faeces of a wild blackbuck antelope. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  32. Ozkose E, Thomas BJ, Davies DR, Griffith GW, Theodorou MK. Cyllamyces aberensis gen.nov. sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can J Bot 2001; 79:666–673 [View Article]
    [Google Scholar]
  33. Stabel M, Hanafy RA, Schweitzer T, Greif M, Aliyu H et al. Aestipascuomyces dupliciliberans gen. nov, sp. nov., the first cultured representative of the uncultured SK4 clade from aoudad sheep and alpaca. Microorganisms 2020; 8:1734 [View Article]
    [Google Scholar]
  34. Hanafy RA, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Dagar SS et al. Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum. Mycologia 2020; 112:1212–1239 [View Article] [PubMed]
    [Google Scholar]
  35. Calkins S, Elledge NC, Hanafy RA, Elshahed MS, Youssef N. A fast and reliable procedure for spore collection from anaerobic fungi: application for RNA uptake and long-term storage of isolates. J Microbiol Methods 2016; 127:206–213 [View Article] [PubMed]
    [Google Scholar]
  36. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [View Article] [PubMed]
    [Google Scholar]
  37. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO Update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 2021; 38:4647–4654 [View Article] [PubMed]
    [Google Scholar]
  38. Gruninger RJ, Nguyen TTM, Reid ID, Yanke JL, Wang P et al. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates. Front Microbiol 2018; 9:1581 [View Article] [PubMed]
    [Google Scholar]
  39. Brown JL, Swift CL, Mondo SJ, Seppala S, Salamov A et al. Co‑cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates. Biotechnol Biofuels 2021; 14:234 [View Article] [PubMed]
    [Google Scholar]
  40. Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R et al. A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol 2017; 2:17087 [View Article] [PubMed]
    [Google Scholar]
  41. Henske JK, Gilmore SP, Knop D, Cunningham FJ, Sexton JA et al. Transcriptomic characterization of Caecomyces churrovis: a novel, non-rhizoid-forming lignocellulolytic anaerobic fungus. Biotechnol Biofuels 2017; 10:305 [View Article] [PubMed]
    [Google Scholar]
  42. Li Y, Li Y, Jin W, Sharpton TJ, Mackie RI et al. Combined genomic, transcriptomic, proteomic, and physiological characterization of the growth of Pecoramyces sp. F1 in monoculture and co-culture with a syntrophic methanogen. Front Microbiol 2019; 10:435 [View Article] [PubMed]
    [Google Scholar]
  43. Wilken SE, Monk JM, Leggieri PA, Lawson CE, Lankiewicz TS et al. Experimentally validated reconstruction and analysis of a genome-scale metabolic model of an anaerobic Neocallimastigomycota fungus. mSystems 2021; 6:e00002-21 [View Article] [PubMed]
    [Google Scholar]
  44. Chang Y, Wang S, Sekimoto S, Aerts AL, Choi C et al. Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol Evol 2015; 7:1590–1601 [View Article] [PubMed]
    [Google Scholar]
  45. Mondo SJ, Dannebaum RO, Kuo RC, Louie KB, Bewick AJ et al. Widespread adenine N6-methylation of active genes in fungi. Nat Genet 2017; 49:964–968 [View Article] [PubMed]
    [Google Scholar]
  46. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  47. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  48. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  49. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  50. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  51. Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017; 2:1533–1542 [View Article] [PubMed]
    [Google Scholar]
  52. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  53. Wibberg D, Stadler M, Lambert C, Bunk B, Spröer C et al. High quality genome sequences of thirteen Hypoxylaceae (Ascomycota) strengthen the phylogenetic family backbone and enable the discovery of new taxa. Fungal Diversity 2021; 106:7–28 [View Article]
    [Google Scholar]
  54. Wang K, Sipilä T, Overmyer K. A novel Arabidopsis phyllosphere resident Protomyces species and a re-examination of genus Protomyces based on genome sequence data. IMA Fungus 2021; 12:8 [View Article] [PubMed]
    [Google Scholar]
  55. Hanafy RA, Johnson B, Elshahed MS, Youssef NH. Anaeromyces contortus, sp. nov., a new anaerobic gut fungal species (Neocallimastigomycota) isolated from the feces of cow and goat. Mycologia 2018; 110:502–512 [View Article] [PubMed]
    [Google Scholar]
  56. Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 2016; 351:1192–1195 [View Article] [PubMed]
    [Google Scholar]
  57. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  58. Gold JJ, Heath IB, Bauchop T. Ultrastructural description of a new chytrid genus of caecum anaerobe, Caecomyces equi gen. nov., sp. nov., assigned to the Neocallimasticaceae. Biosystems 1988; 21:403–415 [View Article]
    [Google Scholar]
  59. Dagar SS, Kumar S, Mudgil P, Singh R, Puniya AK. D1/D2 domain of large-subunit ribosomal DNA for differentiation of Orpinomyces spp. Appl Environ Microbiol 2011; 77:6722–6725 [View Article] [PubMed]
    [Google Scholar]
  60. Kandawatte Wedaralalage TC, Jayawardena RS, Hyde KD. Hurdles in fungal taxonomy: effectiveness of recent methods in discriminating taxa. MT 2020; 1:114–122 [View Article]
    [Google Scholar]
  61. Braune R. Untersuchungen uber die im wiederkauermagen vorkommenden protozoen (investigations into the protozoa occurring in the ruminant stomach). Archiv fiir Protistenkunde 1913; 32:1–170
    [Google Scholar]
  62. Vavra J, Joyon L. Etude sur la morphologie, le cycle ivolutif et la position systematique de Callimastix cyclopsis Weissenberg 1912. (study on the morphology, the evolutionary cycle and the systematic position of Callimastix cyclopsis Weissenberg 1912). Protistologica 1966; 2:5–15
    [Google Scholar]
  63. Breton A, Bernalier A, Bonnemoy F, Fonty G, Gaillard B et al. Morphological and metabolic characterization of a new species of strictly anaerobic rumen fungus: Neocallimastix joyonii. FEMS Microbiol Lett 1989; 58:309–314 [View Article]
    [Google Scholar]
  64. Barr DJ, KudO H, Jakober KD, Cheng KJ. Morphology and development of rumen fungi: Neocallimastix sp., Piromyces communis, and Orpinomyces bovis gen.nov., sp.nov. Can J Bot 1989; 67:2815–2824
    [Google Scholar]
  65. Breton A, Bernalier A, Dusser M, Fonty G, Gaillard-Martinie B et al. Anaeromyces mucronatus nov. gen., nov. sp. A new strictly anaerobic rumen fungus with polycentric thallus. FEMS Microbiol Lett 1990; 70:177–182 [View Article]
    [Google Scholar]
  66. Joshi A, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Griffith GW et al. Liebetanzomycespolymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys 2018; 40:89–110 [View Article]
    [Google Scholar]
  67. Murphy CL, Youssef NH, Hanafy RA, Couger MB, Stajich J et al. Horizontal gene transfer forged the evolution of anaerobic gut fungi into a phylogenetically distinct gut-dwelling fungal lineage. Appl Environ Microbiol 2019; 85:e00988–00919 [View Article]
    [Google Scholar]
  68. Wang Y, Youssef N, Couger M, Hanafy R, Elshahed M et al. Comparative genomics and divergence time estimation of the anaerobic fungi in herbivorous mammals. msystems 201900247-19
    [Google Scholar]
  69. Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA et al. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 2013; 79:4620–4634 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005735
Loading
/content/journal/ijsem/10.1099/ijsem.0.005735
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error