1887

Abstract

Strain SX5 was isolated from the soil of a poultry farm in Shanxi Province, PR China. The isolate was a Gram-stain-negative, rod-shaped, non-flagellated, and yellow bacterium. Growth occurred at 20–37 °C (optimum, 28 °C), pH 6.0–10.0 (optimum, pH 8.0) and 0–1 % NaCl (optimum, 0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SX5 was related to members of the genus , and close to H23 (97.9 %), Y4 (97.9 %), RIB1-20 (96.8 %), SYP-B804 (96.4 %) and Gsoil 068 (96.1 %). The major cellular fatty acids of strain SX5 were iso-C, iso-C 9, iso-C and iso-C 3OH. The sole isoprenoid quinone was ubiquinone Q-8, and the major polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Genome analyses revealed that strain SX5 had a genome size of 3.6 Mbp with a G+C content of 65.7 mol% and contained abundant carbohydrate-active enzyme genes and three putative distinct biosynthetic gene clusters, suggesting that it may have great potential to degrade and utilize complex biological organic matter and produce special secondary metabolites. Comparative genomic analyses clearly separated strain SX5 from the known species of the genus based on average nucleotide identity and digital DNA–DNA hybridization values below the thresholds for species delineation. Based on its phenotypic, genotypic properties and phylogenetic inference, strain SX5 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is SX5 (=GDMCC 1.2162=KCTC 82443=JCM 34401).

Funding
This study was supported by the:
  • University–Industry Collaborative Education Program (Award 202102083002)
    • Principle Award Recipient: Guo-zhuZhao
  • Fundamental Research Funds for the Central Universities at Beijing Forestry University (Award 2021ZY61)
    • Principle Award Recipient: Guo-zhuZhao
  • National Natural Science Foundation of China (Award 31570019)
    • Principle Award Recipient: Guo-zhuZhao
  • National Natural Science Foundation of China (Award 31770110)
    • Principle Award Recipient: Xiang-weiHe
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005717
2023-02-17
2024-05-19
Loading full text...

Full text loading...

References

  1. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50 Pt 1:273–282 [View Article]
    [Google Scholar]
  2. Siddiqi MZ, Yeon JM, Choi H, Lee JH, Kim SY et al. Luteimonas granuli sp. nov., isolated from granules of the wastewater treatment plant. Curr Microbiol 2020; 77:2002–2007 [View Article]
    [Google Scholar]
  3. Margesin R, Zhang D-C, Albuquerque L, Froufe HJC, Egas C et al. Lysobacter silvestris sp. nov., isolated from alpine forest soil, and reclassification of Luteimonas tolerans as Lysobacter tolerans comb. nov. Int J Syst Evol Microbiol 2018; 68:1571–1577 [View Article] [PubMed]
    [Google Scholar]
  4. Jin C-Z, Song X, Sung YJ, Jin F-J, Li T et al. Lysobacter profundi sp. nov., isolated from freshwater sediment and reclassification of Lysobacter panaciterrae as Luteimonas panaciterrae comb. nov. Int J Syst Evol Microbiol 2020; 70:3878–3887 [View Article] [PubMed]
    [Google Scholar]
  5. Parte AC. LPSN - List of Prokaryotic Names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  6. Zhang D-C, Liu H-C, Xin Y-H, Zhou Y-G, Schinner F et al. Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2010; 60:1581–1584 [View Article] [PubMed]
    [Google Scholar]
  7. Xiong L, An L, Zong Y, Wang M, Wang G et al. Luteimonas gilva sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2020; 70:3462–3467 [View Article] [PubMed]
    [Google Scholar]
  8. Baik KS, Park SC, Kim MS, Kim EM, Park C et al. Luteimonas marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008; 58:2904–2908 [View Article] [PubMed]
    [Google Scholar]
  9. Wu G, Liu Y, Li Q, Du H, You J et al. Luteimonas huabeiensis sp. nov., isolated from stratum water. Int J Syst Evol Microbiol 2013; 63:3352–3357 [View Article] [PubMed]
    [Google Scholar]
  10. Sun Z-B, Zhang H, Yuan X-F, Wang Y-X, Feng D-M et al. Luteimonas cucumeris sp. nov., isolated a from cucumber leaf. Int J Syst Evol Microbiol 2012; 62:2916–2920 [View Article] [PubMed]
    [Google Scholar]
  11. Fan X, Yu T, Li Z, Zhang XH. Luteimonas abyssi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:668–674 [View Article] [PubMed]
    [Google Scholar]
  12. Lin S-Y, Hameed A, Shahina M, Liu Y-C, Hsu Y-H et al. Description of Luteimonas pelagia sp. nov., isolated from marine sediment, and emended descriptions of Luteimonas aquatica, Luteimonas composti, Luteimonas mephitis, Lysobacter enzymogenes and Lysobacter panaciterrae . Int J Syst Evol Microbiol 2016; 66:645–651 [View Article] [PubMed]
    [Google Scholar]
  13. Young C-C, Kämpfer P, Chen W-M, Yen W-S, Arun AB et al. Luteimonas composti sp. nov., a moderately thermophilic bacterium isolated from food waste. Int J Syst Evol Microbiol 2007; 57:741–744 [View Article] [PubMed]
    [Google Scholar]
  14. Mu Y, Pan Y, Shi W, Liu L, Jiang Z et al. Luteimonas arsenica sp. nov., an arsenic-tolerant bacterium isolated from arsenic-contaminated soil. Int J Syst Evol Microbiol 2016; 66:2291–2296 [View Article] [PubMed]
    [Google Scholar]
  15. Xin Y, Cao X, Wu P, Xue S. Luteimonas dalianensis sp. nov., an obligate marine bacterium isolated from seawater. J Microbiol 2014; 52:729–733 [View Article] [PubMed]
    [Google Scholar]
  16. Chen Y, Zhang Y, Xin D, Luo X, Pang H et al. Description and genome analysis of Luteimonas viscosa sp. nov., a novel bacterium isolated from soil of a sunflower field. Antonie Van Leeuwenhoek 2022; 115:749–760 [View Article] [PubMed]
    [Google Scholar]
  17. Shen L, Liu J-J, Liu P-X, An M-M, He X-W et al. A non-symbiotic novel species, Rhizobium populisoli sp. nov., isolated from rhizosphere soil of Populus popularis . Arch Microbiol 2021; 204:50 [View Article] [PubMed]
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  21. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113 [View Article] [PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  24. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article] [PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  27. Chou JH, Cho NT, Arun AB, Young CC, Chen WM. Luteimonas aquatica sp. nov., isolated from fresh water from Southern Taiwan. Int J Syst Evol Microbiol 2008; 58:2051–2055 [View Article]
    [Google Scholar]
  28. Cheng J, Zhang M-Y, Wang W-X, Manikprabhu D, Salam N et al. Luteimonas notoginsengisoli sp. nov., isolated from rhizosphere. Int J Syst Evol Microbiol 2016; 66:946–950 [View Article] [PubMed]
    [Google Scholar]
  29. Ten LN, Jung H-M, Im W-T, Yoo S-A, Oh H-M et al. Lysobacter panaciterrae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2009; 59:958–963 [View Article] [PubMed]
    [Google Scholar]
  30. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  32. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  33. Chan PP, Lowe TM. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol 2019; 1962:1–14 [View Article] [PubMed]
    [Google Scholar]
  34. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  35. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–9 [View Article] [PubMed]
    [Google Scholar]
  36. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–62 [View Article] [PubMed]
    [Google Scholar]
  37. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  38. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011; 39:W339–46 [View Article] [PubMed]
    [Google Scholar]
  39. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  43. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  44. Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 2008; 36:W181–4 [View Article] [PubMed]
    [Google Scholar]
  45. Zhao G-Y, Shao F, Zhang M, Zhang X-J, Wang J-Y et al. Luteimonas rhizosphaerae sp. nov., isolated from the rhizosphere of Triticum aestivum L. Int J Syst Evol Microbiol 2018; 68:1197–1203 [View Article] [PubMed]
    [Google Scholar]
  46. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  47. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  48. Poplawsky AR, Urban SC, Chun W. Biological role of xanthomonadin pigments in Xanthomonas campestris pv. campestris . Appl Environ Microbiol 2000; 66:5123–5127 [View Article] [PubMed]
    [Google Scholar]
  49. Rajagopal L, Sundari CS, Balasubramanian D, Sonti RV. The bacterial pigment xanthomonadin offers protection against photodamage. FEBS Lett 1997; 415:125–128 [View Article] [PubMed]
    [Google Scholar]
  50. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  51. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society For Microbiology; 1994 pp 607–654
    [Google Scholar]
  52. Fraser SL, Jorgensen JH. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 1997; 41:2738–2741 [View Article] [PubMed]
    [Google Scholar]
  53. Jarvis BDW, Sivakumaran S, Tighe SW, Gillis M. Identification of Agrobacterium and Rhizobium species based on cellular fatty acid composition. Plant Soil 1996; 184:143–158 [View Article]
    [Google Scholar]
  54. Kellogg JA, Bankert DA, Withers GS, Sweimler W, Kiehn TE et al. Application of the Sherlock Mycobacteria Identification System using high-performance liquid chromatography in a clinical laboratory. J Clin Microbiol 2001; 39:964–970 [View Article] [PubMed]
    [Google Scholar]
  55. Kates M. Techniques of Lipidology, 2nd. edn Amsterdam: Elsevier; 1986
    [Google Scholar]
  56. Collins MD, Goodfellow M, Minnikin DE. Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 1980; 118:29–37 [View Article] [PubMed]
    [Google Scholar]
  57. Wang X, Yang H-X, Zhang Y-K, Zhu S-J, Liu X-W et al. Luteimonas soli sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2015; 65:4809–4815 [View Article] [PubMed]
    [Google Scholar]
  58. Verma A, Ojha AK, Kumari P, Sundharam SS, Mayilraj S et al. Luteimonas padinae sp. nov., an epiphytic bacterium isolated from an intertidal macroalga. Int J Syst Evol Microbiol 2016; 66:5444–5451 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005717
Loading
/content/journal/ijsem/10.1099/ijsem.0.005717
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error