- Volume 167, Issue 2, 2021
Volume 167, Issue 2, 2021
- Editorial
-
- Review
-
-
-
Ribosome hibernation: a new molecular framework for targeting nonreplicating persisters of mycobacteria
Treatment of tuberculosis requires a multi-drug regimen administered for at least 6 months. The long-term chemotherapy is attributed in part to a minor subpopulation of nonreplicating Mycobacterium tuberculosis cells that exhibit phenotypic tolerance to antibiotics. The origins of these cells in infected hosts remain unclear. Here we discuss some recent evidence supporting the hypothesis that hibernation of ribosomes in M. tuberculosis, induced by zinc starvation, could be one of the primary mechanisms driving the development of nonreplicating persisters in hosts. We further analyse inconsistencies in previously reported studies to clarify the molecular principles underlying mycobacterial ribosome hibernation.
-
-
- Cell Biology
-
-
-
Multiple holins contribute to extracellular DNA release in Pseudomonas aeruginosa biofilms
Bacterial biofilms are composed of aggregates of cells encased within a matrix of extracellular polymeric substances (EPS). One key EPS component is extracellular DNA (eDNA), which acts as a ‘glue’, facilitating cell–cell and cell–substratum interactions. We have previously demonstrated that eDNA is produced in Pseudomonas aeruginosa biofilms via explosive cell lysis. This phenomenon involves a subset of the bacterial population explosively lysing, due to peptidoglycan degradation by the endolysin Lys. Here we demonstrate that in P. aeruginosa three holins, AlpB, CidA and Hol, are involved in Lys-mediated eDNA release within both submerged (hydrated) and interstitial (actively expanding) biofilms, albeit to different extents, depending upon the type of biofilm and the stage of biofilm development. We also demonstrate that eDNA release events determine the sites at which cells begin to cluster to initiate microcolony formation during the early stages of submerged biofilm development. Furthermore, our results show that sustained release of eDNA is required for cell cluster consolidation and subsequent microcolony development in submerged biofilms. Overall, this study adds to our understanding of how eDNA release is controlled temporally and spatially within P. aeruginosa biofilms.
-
-
-
-
Influence of core divisome proteins on cell division in Streptomyces venezuelae ATCC 10712
More LessThe sporulating, filamentous soil bacterium Streptomyces venezuelae ATCC 10712 differentiates under submerged and surface growth conditions. In order to lay a solid foundation for the study of development-associated division for this organism, a congenic set of mutants was isolated, individually deleted for a gene encoding either a cytoplasmic (i.e. ftsZ) or core inner membrane (i.e. divIC, ftsL, ftsI, ftsQ, ftsW) component of the divisome. While ftsZ mutants are completely blocked for division, single mutants in the other core divisome genes resulted in partial, yet similar, blocks in sporulation septum formation. Double and triple mutants for core divisome membrane components displayed phenotypes that were similar to those of the single mutants, demonstrating that the phenotypes were not synergistic. Division in this organism is still partially functional without multiple core divisome proteins, suggesting that perhaps other unknown lineage-specific proteins perform redundant functions. In addition, by isolating an ftsZ2p mutant with an altered −10 region, the conserved developmentally controlled promoter was also shown to be required for sporulation-associated division. Finally, microscopic observation of FtsZ-YFP dynamics in the different mutant backgrounds led to the conclusion that the initial assembly of regular Z rings does not per se require the tested divisome membrane proteins, but the stability of Z rings is dependent on the divisome membrane components tested. The observation is consistent with the interpretation that Z ring instability likely results from and further contributes to the observed defects in sporulation septation in mutants lacking core divisome proteins.
-
- Genomics and Systems Biology
-
-
-
carP, encoding a Ca2+-regulated putative phytase, is evolutionarily conserved in Pseudomonas aeruginosa and has potential as a biomarker
Pseudomonas aeruginosa infects patients with cystic fibrosis, burns, wounds and implants. Previously, our group showed that elevated Ca2+ positively regulates the production of several virulence factors in P. aeruginosa , such as biofilm formation, production of pyocyanin and secreted proteases. We have identified a Ca2+-regulated β-propeller putative phytase, CarP, which is required for Ca2+ tolerance, regulation of the intracellular Ca2+ levels, and plays a role in Ca2+ regulation of P. aeruginosa virulence. Here, we studied the conservation of carP sequence and its occurrence in diverse phylogenetic groups of bacteria. In silico analysis revealed that carP and its two paralogues PA2017 and PA0319 are primarily present in P. aeruginosa and belong to the core genome of the species. We identified 155 single nucleotide alterations within carP, 42 of which lead to missense mutations with only three that affected the predicted 3D structure of the protein. PCR analyses with carP-specific primers detected P. aeruginosa specifically in 70 clinical and environmental samples. Sequence comparison demonstrated that carP is overall highly conserved in P. aeruginosa isolated from diverse environments. Such evolutionary preservation of carP illustrates its importance for P. aeruginosa adaptations to diverse environments and demonstrates its potential as a biomarker.
-
-
-
-
Atypical chlamydoconidium-producing Trichophyton tonsurans strains from Ceará State, Northeast Brazil: investigation of taxonomy by phylogenetic analysis and biofilm susceptibility
Raimunda Sâmia Nogueira Brilhante, Germana Costa Paixão, Vandbergue Santos Pereira, Jonathas Sales de Oliveira, Juliana Maria Maciel, Waldemiro de Aquino Pereira-Neto, Reginaldo Gonçalves de Lima-Neto, Débora de Souza Collares Maia Castelo-Branco, Rossana de Aguiar Cordeiro, José Júlio Costa Sidrim and Marcos Fábio Gadelha RochaChlamydoconidium-producing Trichophyton tonsurans strains isolated in Northeastern Brazil have morphological features different from the classic description of this dermatophyte species. This study investigated the phylogenetic relationship of chlamydoconidium-producing T. tonsurans strains isolated in Northeastern Brazil. Also, the effect of terbinafine and farnesol on mature biofilms of T. tonsurans strains was evaluated. The mass spectra of T. tonsurans strains were investigated by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The ITS and LSU loci regions of rDNA and the partial β-tubulin gene were sequenced and the phylogenetic tree was analysed. The effects of terbinafine and farnesol on mature T. tonsurans biofilms were evaluated through the analysis of metabolic activity, quantification of biomass and observation by scanning electron microscopy. MALDI-TOF MS spectra of the chlamydoconidium-producing T. tonsurans strains differed from the spectrum of the control strain (ATCC 28942), presenting an intense ion peak at m/z 4155 Da. Phylogenetic tree analysis showed that the chlamydoconidium-producing strains isolated in Northeastern Brazil are allocated to a single cluster, differing from strains isolated from other countries. As for mature T. tonsurans biofilms, farnesol reduced biomass and metabolic activity by 64.4 and 65.9 %, respectively, while terbinafine reduced the biomass by 66.5 % and the metabolic activity by 69 %. Atypical morphological characteristics presented by chlamydoconidium-producing T. tonsurans strains result from phenotypic plasticity, possibly for adaptation to environmental stressors. Also, farnesol had inhibitory activity against T. tonsurans biofilms, demonstrating this substance can be explored for development of promising anti-biofilm drugs against dermatophytes.
-
- Host-microbe Interaction
-
-
-
Point mutation in the stop codon of MAV_RS14660 increases the growth rate of Mycobacterium avium subspecies hominissuis
Mycobacterium avium subspecies hominissuis (MAH) is a pathogen that causes various non-tuberculous mycobacterial diseases in humans and animals worldwide. Among the genus, MAH is characterized by relatively slow growth. Here, we isolated a rapidly growing variant of the MAH 104 strain. The variant strain (named N104) exhibited an enhanced growth rate and higher motility compared to the parent MAH 104 strain (P104). Whole-genome sequencing analysis of N104 revealed the loss of the stop codon of MAV_RS14660 due to a single nucleotide replacement, resulting in the substitution of the codon for tryptophan. Notably, exclusion of the stop codon ligated the open reading frames and caused the fusion of two adjacent proteins. A revertant parent strain, in which a mutation was introduced to restore the stop codon, revealed that elimination of the stop codon in MAV_RS14660 was responsible for the N104 phenotype. Furthermore, we analysed the phenotypes of the parent and mutated strains by determining the functions of the MAV_RS14660 and MAV_RS14655 coding regions flanking the stop codon. The mutant strains, expected to express a fusion protein, exhibited increased resistance to antimicrobial drugs and exogenous copper toxicity compared to that of the parent strains. These findings suggest that the fusion of the MAV_RS14660- and MAV_RS14655-encoding regions in the mutant N104 strain could be related to the modified functions of these intrinsic proteins.
-
-
- Physiology and Metabolism
-
-
-
The putative phosphate transporter PitB (PP1373) is involved in tellurite uptake in Pseudomonas putida KT2440
Tellurium oxyanions are chemical species of great toxicity and their presence in the environment has increased because of mining industries and photovoltaic and electronic waste. Recovery strategies for this metalloid that are based on micro-organisms are of interest, but further studies of the transport systems and enzymes responsible for implementing tellurium transformations are required because many mechanisms remain unknown. Here, we investigated the involvement in tellurite uptake of the putative phosphate transporter PitB (PP1373) in soil bacterium Pseudomonas putida KT2440. For this purpose, through a method based on the CRISPR/Cas9 system, we generated a strain deficient in the pitB gene and characterized its phenotype on exposing it to varied concentrations of tellurite. Growth curves and transmission electronic microscopy experiments for the wild-type and ΔpitB strains showed that both were able to internalize tellurite into the cytoplasm and reduce the oxyanion to black nano-sized and rod-shaped tellurium particles, although the ΔpitB strain showed an increased resistance to the tellurite toxic effects. At a concentration of 100 μM tellurite, where the biomass formation of the wild-type strain decreased by half, we observed a greater ability of ΔpitB to reduce this oxyanion with respect to the wild-type strain (~38 vs ~16 %), which is related to the greater biomass production of ΔpitB and not to a greater consumption of tellurite per cell. The phenotype of the mutant was restored on over-expressing pitB in trans. In summary, our results indicate that PitB is one of several transporters responsible for tellurite uptake in P. putida KT2440.
-
-
-
-
Improved growth and morphological plasticity of Haloferax volcanii
Some microbes display pleomorphism, showing variable cell shapes in a single culture, whereas others differentiate to adapt to changed environmental conditions. The pleomorphic archaeon Haloferax volcanii commonly forms discoid-shaped (‘plate’) cells in culture, but may also be present as rods, and can develop into motile rods in soft agar, or longer filaments in certain biofilms. Here we report improvement of H. volcanii growth in both semi-defined and complex media by supplementing with eight trace element micronutrients. With these supplemented media, transient development of plate cells into uniformly shaped rods was clearly observed during the early log phase of growth; cells then reverted to plates for the late log and stationary phases. In media prepared with high-purity water and reagents, without supplemental trace elements, rods and other complex elongated morphologies (‘pleomorphic rods’) were observed at all growth stages of the culture; the highly elongated cells sometimes displayed a substantial tubule at one or less frequently both poles, as well as unusual tapered and highly curved forms. Polar tubules were observed forming by initial mid-cell narrowing or tubulation, causing a dumbbell-like shape, followed by cell division towards one end. Formation of the uniform early log-phase rods, as well as the pleomorphic rods and tubules were dependent on the function of the tubulin-like cytoskeletal protein, CetZ1. Our results reveal the remarkable morphological plasticity of H. volcanii cells in response to multiple culture conditions, and should facilitate the use of this species in further studies of archaeal biology.
-
-
-
A palette of fluorophores that are differentially accumulated by wild-type and mutant strains of Escherichia coli: surrogate ligands for profiling bacterial membrane transporters
More LessOur previous work demonstrated that two commonly used fluorescent dyes that were accumulated by wild-type Escherichia coli MG1655 were differentially transported in single-gene knockout strains, and also that they might be used as surrogates in flow cytometric transporter assays. We summarize the desirable properties of such stains, and here survey 143 candidate dyes. We eventually triage them (on the basis of signal, accumulation levels and cost) to a palette of 39 commercially available and affordable fluorophores that are accumulated significantly by wild-type cells of the ‘Keio’ strain BW25113, as measured flow cytometrically. Cheminformatic analyses indicate both their similarities and their (much more considerable) structural differences. We describe the effects of pH and of the efflux pump inhibitor chlorpromazine on the accumulation of the dyes. Even the ‘wild-type’ MG1655 and BW25113 strains can differ significantly in their ability to take up such dyes. We illustrate the highly differential uptake of our dyes into strains with particular lesions in, or overexpressed levels of, three particular transporters or transporter components (yhjV, yihN and tolC). The relatively small collection of dyes described offers a rapid, inexpensive, convenient and informative approach to the assessment of microbial physiology and phenotyping of membrane transporter function.
-
- Regulation
-
-
-
DksA coordinates bile-mediated regulation of virulence-associated phenotypes in type three secretion system-positive Vibrio cholerae
More LessIn order to cause disease, pathogenic strains of Vibrio cholerae rely on intricate regulatory networks to orchestrate the transition between their native aquatic environment and the human host. For example, bacteria in a nutrient-starved environment undergo a metabolic shift called the stringent response, which is mediated by the alarmone ppGpp and an RNA-polymerase binding transcriptional factor, DksA. In O1 serogroup strains of V. cholerae, which use the toxin co-regulated pilus (TCP) and cholera toxin (CT) as primary virulence factors, DksA was reported to have additional functions as a mediator of virulence gene expression. However, little is known about the regulatory networks coordinating virulence phenotypes in pathogenic strains that use TCP/CT-independent virulence mechanisms. We therefore investigated whether functions of DksA outside of the stringent response are conserved in type three secretion system (T3SS)-positive V. cholerae . In using the T3SS-positive clinically isolated O39 serogroup strain AM-19226, we observed an increase in dksA expression in the presence of bile at 37 °C. However, DksA was not required for wild-type levels of T3SS structural gene expression, or for colonization in vivo. Rather, data indicate that DksA positively regulates the expression of master regulators in the motility hierarchy. Interestingly, the ΔdksA strain forms a less robust biofilm than the WT parent strain at both 30 and 37 °C. We also found that DksA regulates the expression of hapR, encoding a major regulator of biofilm formation and protease expression. Athough DksA does not appear to modulate T3SS virulence factor expression, its activity is integrated into existing regulatory networks governing virulence-related phenotypes. Strain variations therefore may take advantage of conserved ancestral proteins to expand regulons responding to in vivo signals and thus coordinate multiple phenotypes important for infection.
-
-
-
-
Biochemical and functional characterization of the SMC holocomplex from Mycobacterium smegmatis
More LessMulti-subunit SMC complexes are required to perform essential functions, such as chromosome compaction, segregation and DNA repair, from bacteria to humans. Prokaryotic SMC proteins form complexes with two non-SMC subunits, ScpA and ScpB, to condense the chromosome. The mutants of both scpa and scpb genes in Bacillus subtilis have been shown to display characteristic phenotypes such as growth defects and increased frequency of anucleate cells. Here, we studied the function of the Smc-ScpAB complex from Mycobacterium smegmatis . We observed no significant growth difference between the scpb null mutant and wild-type M. smegmatis under both standard and stress conditions. Furthermore, we characterized the Smc-ScpAB holocomplex from M. smegmatis . The MsSMC consists of the dimerization hinge and ATPase head domains connected by long coiled-coils. The MsSMC interacts with two non-SMC proteins, ScpA and ScpB, and the resulting holocomplex binds to different DNA substrates independent of ATP. The Smc-ScpAB complex showed DNA-stimulated ATPase activity in the presence of ssDNA. A cytological profiling assay revealed that upon overexpression the Smc-ScpAB ternary complex compacts the decondensed nucleoid of rifampicin-treated wild-type and null mukb mutant of Escherichia coli in vivo. Together, our study suggests that M. smegmatis has a functional Smc-ScpAB complex capable of DNA binding and condensation. Based on our observations, we speculate that the presence of alternative SMCs such as MksB or other SMC homologues might have rescued the scpb mutant phenotype in M. smegmatis .
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)