1887

Abstract

Chlamydoconidium-producing strains isolated in Northeastern Brazil have morphological features different from the classic description of this dermatophyte species. This study investigated the phylogenetic relationship of chlamydoconidium-producing strains isolated in Northeastern Brazil. Also, the effect of terbinafine and farnesol on mature biofilms of strains was evaluated. The mass spectra of strains were investigated by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The ITS and LSU loci regions of rDNA and the partial β-tubulin gene were sequenced and the phylogenetic tree was analysed. The effects of terbinafine and farnesol on mature biofilms were evaluated through the analysis of metabolic activity, quantification of biomass and observation by scanning electron microscopy. MALDI-TOF MS spectra of the chlamydoconidium-producing strains differed from the spectrum of the control strain (ATCC 28942), presenting an intense ion peak at 4155 Da. Phylogenetic tree analysis showed that the chlamydoconidium-producing strains isolated in Northeastern Brazil are allocated to a single cluster, differing from strains isolated from other countries. As for mature biofilms, farnesol reduced biomass and metabolic activity by 64.4 and 65.9 %, respectively, while terbinafine reduced the biomass by 66.5 % and the metabolic activity by 69 %. Atypical morphological characteristics presented by chlamydoconidium-producing strains result from phenotypic plasticity, possibly for adaptation to environmental stressors. Also, farnesol had inhibitory activity against biofilms, demonstrating this substance can be explored for development of promising anti-biofilm drugs against dermatophytes.

Funding
This study was supported by the:
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (Award 306976/2017-0)
    • Principle Award Recipient: Josesidrm
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001018
2021-01-11
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/2/micro001018.html?itemId=/content/journal/micro/10.1099/mic.0.001018&mimeType=html&fmt=ahah

References

  1. Zhan P, Liu W. The changing face of dermatophytic infections worldwide. Mycopathologia 2017; 182:77–86 [View Article][PubMed]
    [Google Scholar]
  2. Gupta AK, Mays RR, Versteeg SG, Piraccini BM, Shear NH et al. Tinea capitis in children: a systematic review of management. J Eur Acad Dermatol Venereol 2018; 32:2264–2274 [View Article][PubMed]
    [Google Scholar]
  3. Takenaka M, Murota H, Nishimoto K. Epidemiological survey of 42403 dermatophytosis cases examined at Nagasaki University Hospital from 1966 to 2015. J Dermatol 2020; 47:615–621 [View Article][PubMed]
    [Google Scholar]
  4. de Albuquerque Maranhão FC, Oliveira-Júnior JB, Dos Santos Araújo MA, Silva DMW. Mycoses in northeastern Brazil: epidemiology and prevalence of fungal species in 8 years of retrospective analysis in Alagoas. Braz J Microbiol 2019; 50:969–978 [View Article][PubMed]
    [Google Scholar]
  5. Sidrim JJC, Rocha MFG, Leite JJG, Maranhão FCdeA, Lima RAC et al. Trichophyton tonsurans strains from Brazil: phenotypic heterogeneity, genetic homology, and detection of virulence genes. Can J Microbiol 2013; 59:754–760 [View Article][PubMed]
    [Google Scholar]
  6. Brilhante RN, Paixäo G, de Oliveira J, Pereira V, Rocha MG. Chlamydoconidium-producing Trichophyton tonsurans: Atypical morphological features of strains causing tinea capitis in Ceará, Brazil. Asian Pac J Trop Med 2019; 12:380
    [Google Scholar]
  7. Brilhante RSN, Correia EEM, Guedes GMdeM, Pereira VS, Oliveira JSde et al. Quantitative and structural analyses of the in vitro and ex vivo biofilm-forming ability of dermatophytes. J Med Microbiol 2017; 66:1045–1052 [View Article][PubMed]
    [Google Scholar]
  8. Ramage G, Rajendran R, Sherry L, Williams C. Fungal biofilm resistance. Int J Microbiol 2012; 2012:1–14 [View Article][PubMed]
    [Google Scholar]
  9. Brilhante RSN, de Lima RAC, Marques FJdeF, Silva NF, Caetano Érica Pacheco et al. Histoplasma capsulatum in planktonic and biofilm forms: in vitro susceptibility to amphotericin B, itraconazole and farnesol. J Med Microbiol 2015; 64:394–399 [View Article][PubMed]
    [Google Scholar]
  10. Cordeiro RdeA, Pereira LMG, de Sousa JK, Serpa R, Andrade ARC et al. Farnesol inhibits planktonic cells and antifungal-tolerant biofilms of Trichosporon asahii and Trichosporon inkin . Med Mycol 2019; 57:1038–1045 [View Article][PubMed]
    [Google Scholar]
  11. Sebaa S, Boucherit-Otmani Z, Courtois P. Effects of tyrosol and farnesol on Candida albicans biofilm. Mol Med Rep 2019; 19:3201–3209 [View Article][PubMed]
    [Google Scholar]
  12. Baert F, Stubbe D, D'hooge E, Packeu A, Hendrickx M. Updating the taxonomy of dermatophytes of the BCCM/IHEM collection according to the new standard: a phylogenetic approach. Mycopathologia 2020; 185:161–168 [View Article][PubMed]
    [Google Scholar]
  13. de Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D et al. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia 2017; 182:5–31 [View Article][PubMed]
    [Google Scholar]
  14. Abdel-Rahman SM, Sugita T, González GM, Ellis D, Arabatzis M et al. Divergence among an international population of Trichophyton tonsurans isolates. Mycopathologia 2010; 169:1–13 [View Article][PubMed]
    [Google Scholar]
  15. Calderaro A, Motta F, Montecchini S, Gorrini C, Piccolo G et al. Identification of dermatophyte species after implementation of the in-house MALDI-TOF MS database. Int J Mol Sci 2014; 15:16012–16024 [View Article][PubMed]
    [Google Scholar]
  16. Hedayati MT, Taghizadeh-Armaki M, Zarrinfar H, Hoseinnejad A, Ansari S et al. Discrimination of Aspergillus flavus from Aspergillus oryzae by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry. Mycoses 2019; 62:1182–1188 [View Article][PubMed]
    [Google Scholar]
  17. L'Ollivier C, Cassagne C, Normand A-C, Bouchara J-P, Contet-Audonneau N et al. A MALDI-TOF MS procedure for clinical dermatophyte species identification in the routine laboratory. Med Mycol 2013; 51:713–720 [View Article][PubMed]
    [Google Scholar]
  18. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series c1979-c2000 London: Information Retrieval Ltd.; 1999 pp 95–98
    [Google Scholar]
  19. Suh S-O, Grosso KM, Carrion ME. Multilocus phylogeny of the Trichophyton mentagrophytes species complex and the application of matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry for the rapid identification of dermatophytes. Mycologia 2018; 110:118–130 [View Article][PubMed]
    [Google Scholar]
  20. Salehi Z, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Antifungal drug susceptibility profile of clinically important dermatophytes and determination of point mutations in terbinafine-resistant isolates. Eur J Clin Microbiol Infect Dis 2018; 37:1841–1846 [View Article][PubMed]
    [Google Scholar]
  21. Pchelin IM, Rudneva MV, Rudneva MV, Chilina GA, Rezaei-Matehkolaei A et al. Reconstruction of phylogenetic relationships in dermatomycete genus Trichophyton Malmsten 1848 based on ribosomal internal transcribed spacer region, partial 28S rRNA and beta-tubulin genes sequences. Mycoses 2016; 59:566–575 [View Article][PubMed]
    [Google Scholar]
  22. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  24. Cordeiro RdeA, de Oliveira JS, Castelo-Branco DdeSCM, Teixeira CEC, Marques FJdeF et al. Candida tropicalis isolates obtained from veterinary sources show resistance to azoles and produce virulence factors. Med Mycol 2015; 53:145–152 [View Article][PubMed]
    [Google Scholar]
  25. Costa-Orlandi CB, Sardi JCO, Santos CT, Fusco-Almeida AM, Mendes-Giannini MJS. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms. Biofouling 2014; 30:719–727 [View Article][PubMed]
    [Google Scholar]
  26. Kianipour S, Ardestani ME, Dehghan P. Identification of Candida albicans and Candida dubliniensis Species Isolated from Bronchoalveolar Lavage Samples Using Genotypic and Phenotypic Methods. Adv Biomed Res 2018; 7:66 [View Article][PubMed]
    [Google Scholar]
  27. Kimura M, Nishimura K, Enoki E, Chikugo T, Maenishi O. Chlamydospores of Rhizopus microsporus var. rhizopodiformis in tissue of pulmonary mucormycosis. Mycopathologia 2012; 174:441–450 [View Article][PubMed]
    [Google Scholar]
  28. L'Ollivier C, Ranque S. MALDI-TOF-Based dermatophyte identification. Mycopathologia 2017; 182:183–192 [View Article][PubMed]
    [Google Scholar]
  29. Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A et al. Genetic and phenotypic intra-species variation in Candida albicans . Genome Res 2015; 25:413–425 [View Article][PubMed]
    [Google Scholar]
  30. Selmecki A, Forche A, Berman J. Genomic plasticity of the human fungal pathogen Candida albicans . Eukaryot Cell 2010; 9:991–1008 [View Article][PubMed]
    [Google Scholar]
  31. Burkhart CN, Burkhart CG, Gupta AK. Dermatophytoma: Recalcitrance to treatment because of existence of fungal biofilm. J Am Acad Dermatol 2002; 47:629–631 [View Article][PubMed]
    [Google Scholar]
  32. Ghannoum M. Azole resistance in dermatophytes: prevalence and mechanism of action. J Am Podiatr Med Assoc 2016; 106:79–86 [View Article][PubMed]
    [Google Scholar]
  33. Majid I, Sheikh G, Kanth F, Hakak R. Relapse after oral terbinafine therapy in dermatophytosis: a clinical and mycological study. Indian J Dermatol 2016; 61:529–533 [View Article][PubMed]
    [Google Scholar]
  34. Indira G. In vitro antifungal susceptibility testing of 5 antifungal agents against dermatophytic species by CLSI (M38-A) micro dilution method. Clin Microbial 2014; 03:1–5 [View Article]
    [Google Scholar]
  35. LIN H, LIU X, ZHENG Y, SHEN Z, JIANG T. Construction of biofilm models of Trichophyton rubrum and Microsporum canis and observation of their sensibility to terbinafine. Shandong Med J 2018; 2018:7
    [Google Scholar]
  36. Gupta AK, Daigle D, Carviel JL. The role of biofilms in onychomycosis. J Am Acad Dermatol 2016; 74:1241–1246 [View Article][PubMed]
    [Google Scholar]
  37. Peres NTdeA, Maranhão FCA, Rossi A, Martinez-Rossi NM. Dermatophytes: host-pathogen interaction and antifungal resistance. An Bras Dermatol 2010; 85:657–667 [View Article][PubMed]
    [Google Scholar]
  38. Gianni C. Update on antifungal therapy with terbinafine. G Ital Dermatol Venereol 2010; 145:415–424[PubMed]
    [Google Scholar]
  39. Wongsuk T, Pumeesat P, Luplertlop N. Fungal quorum sensing molecules: role in fungal morphogenesis and pathogenicity. J Basic Microbiol 2016; 56:440–447 [View Article][PubMed]
    [Google Scholar]
  40. Castelo-Branco DSCM, Riello GB, Vasconcelos DC, Guedes GMM, Serpa R et al. Farnesol increases the susceptibility of Burkholderia pseudomallei biofilm to antimicrobials used to treat melioidosis. J Appl Microbiol 2016; 120:600–606 [View Article][PubMed]
    [Google Scholar]
  41. Cerca N, Gomes F, Pereira S, Teixeira P, Oliveira R. Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin. BMC Res Notes 2012; 5:244 [View Article][PubMed]
    [Google Scholar]
  42. Xia J, Qian F, Xu W, Zhang Z, Wei X. In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains. Biofouling 2017; 33:283–293 [View Article][PubMed]
    [Google Scholar]
  43. Wang X, Wang Y, Zhou Y, Wei X. Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus . Mycologia 2014; 106:881–888 [View Article][PubMed]
    [Google Scholar]
  44. Brilhante RSN, de Lima RAC, Caetano EP, Leite JJG, Castelo-Branco DdeSCM et al. Effect of farnesol on growth, ergosterol biosynthesis, and cell permeability in Coccidioides posadasii . Antimicrob Agents Chemother 2013; 57:2167–2170 [View Article][PubMed]
    [Google Scholar]
  45. Jabra-Rizk MA, Shirtliff M, James C, Meiller T. Effect of farnesol on Candida dubliniensis biofilm formation and fluconazole resistance. FEMS Yeast Res 2006; 6:1063–1073 [View Article][PubMed]
    [Google Scholar]
  46. Egbe NE, Dornelles TO, Paget CM, Castelli LM, Ashe MP. Farnesol inhibits translation to limit growth and filamentation in C. albicans and S. cerevisiae . Microb Cell 2017; 4:294–304 [View Article][PubMed]
    [Google Scholar]
  47. Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Harris SD. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol 2006; 59:753–764 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001018
Loading
/content/journal/micro/10.1099/mic.0.001018
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error