1887

Abstract

Our previous work demonstrated that two commonly used fluorescent dyes that were accumulated by wild-type MG1655 were differentially transported in single-gene knockout strains, and also that they might be used as surrogates in flow cytometric transporter assays. We summarize the desirable properties of such stains, and here survey 143 candidate dyes. We eventually triage them (on the basis of signal, accumulation levels and cost) to a palette of 39 commercially available and affordable fluorophores that are accumulated significantly by wild-type cells of the ‘Keio’ strain BW25113, as measured flow cytometrically. Cheminformatic analyses indicate both their similarities and their (much more considerable) structural differences. We describe the effects of pH and of the efflux pump inhibitor chlorpromazine on the accumulation of the dyes. Even the ‘wild-type’ MG1655 and BW25113 strains can differ significantly in their ability to take up such dyes. We illustrate the highly differential uptake of our dyes into strains with particular lesions in, or overexpressed levels of, three particular transporters or transporter components (, and ). The relatively small collection of dyes described offers a rapid, inexpensive, convenient and informative approach to the assessment of microbial physiology and phenotyping of membrane transporter function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001016
2021-01-06
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/2/micro001016.html?itemId=/content/journal/micro/10.1099/mic.0.001016&mimeType=html&fmt=ahah

References

  1. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V et al. The complete genome sequence of Escherichia coli K-12. Science 1997; 277:1453–1462 [View Article][PubMed]
    [Google Scholar]
  2. Ghatak S, King ZA, Sastry A, Palsson BO. The y-ome defines the 35% of Escherichia coli genes that lack experimental evidence of function. Nucleic Acids Res 2019; 47:2446–2454 [View Article]
    [Google Scholar]
  3. Riley M. Systems for categorizing functions of gene products. Curr Opin Struct Biol 1998; 8:388–392 [View Article]
    [Google Scholar]
  4. César-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G et al. A call for systematic research on solute carriers. Cell 2015; 162:478–487 [View Article]
    [Google Scholar]
  5. César-Razquin A, Girardi E, Yang M, Brehme M, Sáez-Rodríguez J et al. In silico prioritization of Transporter–Drug relationships from drug sensitivity screens. Front Pharmacol 2018; 9: [View Article]
    [Google Scholar]
  6. Davey HM, Kell DB. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 1996; 60:641–696 [View Article]
    [Google Scholar]
  7. Shapiro HM. Practical Flow Cytometry, 4th ed, 3rd ed. New York: John Wiley; 2003
    [Google Scholar]
  8. Müller S, Davey H. Recent advances in the analysis of individual microbial cells. Cytometry 2009; 75A:83–85 [View Article]
    [Google Scholar]
  9. Van Nevel S, Koetzsch S, Weilenmann H-U, Boon N, Hammes F. Routine bacterial analysis with automated flow cytometry. J Microbiol Methods 2013; 94:73–76 [View Article]
    [Google Scholar]
  10. Hutter K-J, Eipel HE. Microbial determinations by flow cytometry. J Gen Microbiol 1979; 113:369–375 [View Article]
    [Google Scholar]
  11. Mason D, Gant VA. The application of flow cytometry to the estimation of bacterial antibiotic susceptibility. J Antibiotic Chemother 1995; 36:441–443
    [Google Scholar]
  12. Nebe-von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J Microbiol Methods 2000; 42:97–114 [View Article]
    [Google Scholar]
  13. Ambriz-Aviña V, Contreras-Garduño JA, Pedraza-Reyes M. Applications of flow cytometry to characterize bacterial physiological responses. Biomed Res Int 2014; 2014:1–14 [View Article][PubMed]
    [Google Scholar]
  14. LN W, Wang S, Song YY, Wang X, Yan XM. Applications and challenges for single-bacteria analysis by flow cytometry. Sci China Chem 2016; 59:30–39
    [Google Scholar]
  15. Props R, Rubbens P, Besmer M, Buysschaert B, Sigrist J et al. Detection of microbial disturbances in a drinking water microbial community through continuous acquisition and advanced analysis of flow cytometry data. Water Res 2018; 145:73–82 [View Article]
    [Google Scholar]
  16. García-Timermans C, Rubbens P, Heyse J, Kerckhof FM, Props R. Discriminating bacterial phenotypes at the population and single-cell level: a comparison of flow cytometry and Raman spectroscopy fingerprinting. Cytometry A 2019
    [Google Scholar]
  17. Nerada Z, Hegyi Z, Szepesi Áron, Tóth S, Hegedüs C et al. Application of fluorescent dye substrates for functional characterization of ABC multidrug transporters at a single cell level. Cytometry 2016; 89:826–834 [View Article]
    [Google Scholar]
  18. Sinclair LV, Neyens D, Ramsay G, Taylor PM, Cantrell DA. Single cell analysis of kynurenine and system L amino acid transport in T cells. Nat Commun 2018; 9:1981 [View Article]
    [Google Scholar]
  19. Jindal S, Thampy H, Day PJR, Kell DB. Very rapid flow cytometric assessment of antimicrobial susceptibility during the apparent lag phase of microbial (re)growth. Microbiology 2019; 165:439–454 [View Article]
    [Google Scholar]
  20. Jindal S, Yang L, Day PJ, Kell DB. Involvement of multiple influx and efflux transporters in the accumulation of cationic fluorescent dyes by Escherichia coli . BMC Microbiol 2019; 19:also bioRxiv 603688v603681195 [View Article]
    [Google Scholar]
  21. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2:2006 0008. [View Article]
    [Google Scholar]
  22. Yamamoto N, Nakahigashi K, Nakamichi T, Yoshino M, Takai Y et al. Update on the Keio collection of Escherichia coli single‐gene deletion mutants. Mol Syst Biol 2009; 5:335 [View Article]
    [Google Scholar]
  23. Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. OSF preprint 2020
    [Google Scholar]
  24. Kell DB. Protonmotive energy-transducing systems: some physical principles and experimental approaches. In Anthony CJ. editor Bacterial Energy Transduction London: Academic Press; 1988 pp 429–490
    [Google Scholar]
  25. Kell DB. The protonmotive force as an intermediate in electron transport-linked phosphorylation: problems and prospects. Curr Top Cell Reg 1992; 33:279–289
    [Google Scholar]
  26. Dobson PD, Kell DB. Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule?. Nat Rev Drug Discov 2008; 7:205–220 [View Article]
    [Google Scholar]
  27. Kell DB, Dobson PD, Oliver SG. Pharmaceutical drug transport: the issues and the implications that it is essentially carrier-mediated only. Drug Discov Today 2011; 16:704–714 [View Article]
    [Google Scholar]
  28. Kell DB, Dobson PD, Bilsland E, Oliver SG. The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today 2013; 18:218–239 [View Article]
    [Google Scholar]
  29. Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol 2014; 5:231 [View Article]
    [Google Scholar]
  30. Kell DB. What would be the observable consequences if phospholipid bilayer diffusion of drugs into cells is negligible?. Trends Pharmacol Sci 2015; 36:15–21 [View Article]
    [Google Scholar]
  31. Kell DB, Kell DB. How drugs pass through biological cell membranes – a paradigm shift in our understanding?. Beilstein Magazine 2016; 2: [View Article]
    [Google Scholar]
  32. Zhang S, Sakuma M, Deora GS, Levy CW, Klausing A et al. A brain-permeable inhibitor of the neurodegenerative disease target kynurenine 3-monooxygenase prevents accumulation of neurotoxic metabolites. Commun Biol 2019; 2:271 [View Article]
    [Google Scholar]
  33. Bohnert Jürgen A., Karamian B, Nikaido H. Optimized Nile red efflux assay of AcrAB-TolC multidrug efflux system shows competition between substrates. Antimicrob Agents Chemother 2010; 54:3770–3775 [View Article]
    [Google Scholar]
  34. Edwards BS, Young SM, Ivnitsky-Steele I, RD Y, Prossnitz ER. High-content screening: flow cytometry analysis. Methods Mol Biol 2009; 486:151–165
    [Google Scholar]
  35. Ivnitski-Steele I, Larson RS, Lovato DM, Khawaja HM, Winter SS et al. High-throughput flow cytometry to detect selective inhibitors of ABCB1, ABCC1, and ABCG2 transporters. Assay Drug Dev Technol 2008; 6:263–276 [View Article]
    [Google Scholar]
  36. Strouse JJ, Ivnitski-Steele I, Waller A, Young SM, Perez D et al. Fluorescent substrates for flow cytometric evaluation of efflux inhibition in ABCB1, ABCC1, and ABCG2 transporters. Anal Biochem 2013; 437:77–87 [View Article]
    [Google Scholar]
  37. Iyer R, Ferrari A, Rijnbrand R, Erwin AL. A fluorescent microplate assay quantifies bacterial efflux and demonstrates two distinct compound binding sites in AcrB. Antimicrob Agents Chemother 2015; 59:2388–2397 [View Article]
    [Google Scholar]
  38. Iyer R, Erwin AL. Direct measurement of efflux in Pseudomonas aeruginosa using an environment-sensitive fluorescent dye. Res Microbiol 2015; 166:516–524 [View Article]
    [Google Scholar]
  39. O'Hagan S, Kell DB. Consensus rank orderings of molecular fingerprints illustrate the most genuine similarities between marketed drugs and small endogenous human metabolites, but highlight exogenous natural products as the most important ‘natural’ drug transporter substrates. Admet Dmpk 2017; 5:85–125 [View Article]
    [Google Scholar]
  40. Wurm M, Ilhan S, Jandt U, Zeng A-P. Direct and highly sensitive measurement of fluorescent molecules in bulk solutions using flow cytometry. Anal Biochem 2019; 570:32–42 [View Article]
    [Google Scholar]
  41. Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli . Nat Genet 2002; 31:64–68 [View Article]
    [Google Scholar]
  42. Yan K-K, Fang G, Bhardwaj N, Alexander RP, Gerstein M. Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks. Proc Natl Acad Sci U S A 2010; 107:9186–9191 [View Article]
    [Google Scholar]
  43. Sastry AV, Gao Y, Szubin R, Hefner Y, Xu S et al. The Escherichia coli transcriptome mostly consists of independently regulated modules. Nat Commun 2019; 10: [View Article]
    [Google Scholar]
  44. Santos-Zavaleta A, Salgado H, Gama-Castro S, Sánchez-Pérez M, Gómez-Romero L et al. RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Res 2019; 47:D212–D220 [View Article]
    [Google Scholar]
  45. Broadhurst DI, Kell DB. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2007; 2:171–196 [View Article]
    [Google Scholar]
  46. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data mining, Inference and Prediction, 2nd ed. Berlin: Springer-Verlag; 2009
    [Google Scholar]
  47. Kell DB, Morries JG. Formulation and some biological uses of a buffer mixture whose buffering capacity is relatively independent of pH in the range pH 4–9. J Biochem Biophys Methods 1980; 3:143–150 [View Article]
    [Google Scholar]
  48. Kell DB, Ferguson SJ, John P. Measurement by a flow dialysis technique of the steady-state proton-motive force in chromatophores from Rhodospirillum rubrum. Comparison with phosphorylation potential. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1978; 502:111–126 [View Article]
    [Google Scholar]
  49. Weininger D. Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 1988; 28:31–36 [View Article]
    [Google Scholar]
  50. O′Hagan S, Swainston N, Handl J, Kell DB. A ‘rule of 0.5’ for the metabolite-likeness of approved pharmaceutical drugs. Metabolomics 2015; 11:323–339 [View Article]
    [Google Scholar]
  51. Willett P. Similarity‐based data mining in files of two‐dimensional chemical structures using fingerprint measures of molecular resemblance. WIREs Data Min Knowl 2011; 1:241–251 [View Article]
    [Google Scholar]
  52. Gasteiger J. Handbook of Chemoinformatics: From Data to Knowledge Weinheim: Wiley/VCH; 2003
    [Google Scholar]
  53. Guha R, Bender A. Computational Approaches in Cheminformatics and Bioinformatics Hoboken, NJ: Wiley; 2012
    [Google Scholar]
  54. Todeschini R, Consonni V. Molecular Descriptors for Cheminformatics Weinheim: WILEY-VCH Verlag GmbH; 2009
    [Google Scholar]
  55. Shabir G, Saeed A, Ali Channar P. A review on the recent trends in synthetic strategies and applications of xanthene dyes. Mini Rev Org Chem 2018; 15:166–197 [View Article]
    [Google Scholar]
  56. Baldi P, Nasr R. When is chemical similarity significant? the statistical distribution of chemical similarity scores and its extreme values. J Chem Inf Model 2010; 50:1205–1222 [View Article]
    [Google Scholar]
  57. Hähnke V, Rupp M, Hartmann AK, Schneider G. Pharmacophore Alignment Search Tool (PhAST): significance assessment of chemical similarity. Mol Inform 2013; 32:625–646 [View Article]
    [Google Scholar]
  58. Riniker S, Landrum GA. Open-source platform to benchmark fingerprints for ligand-based virtual screening. J Cheminform 2013; 5:26 [View Article]
    [Google Scholar]
  59. O’Boyle NM, Sayle RA. Comparing structural fingerprints using a literature-based similarity benchmark. J Cheminform 2016; 8:36 [View Article]
    [Google Scholar]
  60. Aigner D, Ungerböck B, Mayr T, Saf R, Klimant I et al. Fluorescent materials for pH sensing and imaging based on novel 1,4-diketopyrrolo-[3,4-c]pyrrole dyes. J Mater Chem C Mater 2013; 1:5685–5693 [View Article]
    [Google Scholar]
  61. Bailey AM, Paulsen IT, Piddock LJV. RamA confers multidrug resistance in Salmonella enterica via increased expression of acrB, which is inhibited by chlorpromazine. Antimicrob Agents Chemother 2008; 52:3604–3611 [View Article]
    [Google Scholar]
  62. Lawler AJ, Ricci V, Busby SJW, Piddock LJV. Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA . J Antimicrob Chemother 2013; 68:1551–1557 [View Article]
    [Google Scholar]
  63. Baugh S, Phillips CR, Ekanayaka AS, Piddock LJV, Webber MA. Inhibition of multidrug efflux as a strategy to prevent biofilm formation. J Antimicrob Chemother 2014; 69:673–681 [View Article]
    [Google Scholar]
  64. Davey HM, Davey CL, Kell DB. On the determination of the size of microbial cells using flow cytometry. In Lloyd D. editor Flow Cytometry in Microbiology London: Springer-Verlag; 1993 pp 49–65
    [Google Scholar]
  65. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015; 13:42–51 [View Article]
    [Google Scholar]
  66. X-Z L, Elkins CA, Zgurskaya HI. Efflux-mediated Antimicrobial Resistance in Bacteria: Mechanisms, Regulation and Clinical Implications Berlin: Springer; 2016
    [Google Scholar]
  67. The PLJV. 2019 Garrod Lecture: MDR efflux in Gram-negative bacteria-how understanding resistance led to a new tool for drug discovery. J Antimicrob Chemother 2019; 74:3128–3134
    [Google Scholar]
  68. Schuldiner S. The Escherichia coli effluxome. Res Microbiol 2018; 169:357–362 [View Article]
    [Google Scholar]
  69. Law CJ, Alegre KO. Clamping down on drugs: the Escherichia coli multidrug efflux protein MdtM. Res Microbiol 2018; 169:461–467 [View Article]
    [Google Scholar]
  70. Puzari M, Chetia P. RND efflux pump mediated antibiotic resistance in Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa: a major issue worldwide. World J Microbiol Biotechnol 2017; 33:24 [View Article]
    [Google Scholar]
  71. Anes João, McCusker MP, Fanning Séamus, Martins M, Anes J et al. The ins and outs of RND efflux pumps in Escherichia coli . Front Microbiol 2015; 6:587 [View Article]
    [Google Scholar]
  72. Darbani B, Kell DB, Borodina I. Energetic evolution of cellular transportomes. BMC Genomics 2018; 19:418 [View Article]
    [Google Scholar]
  73. Griffith JM, Basting PJ, Bischof KM, Wrona EP, Kunka KS. Experimental evolution of Escherichia coli K-12 in the Presence of Proton Motive Force (PMF) uncoupler carbonyl cyanide m-Chlorophenylhydrazone selects for mutations affecting PMF-driven drug efflux pumps. Appl Environ Microbiol 2019; 85:
    [Google Scholar]
  74. Kell DB, Swainston N, Pir P, Oliver SG. Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends Biotechnol 2015; 33:237–246 [View Article]
    [Google Scholar]
  75. Kell DB. Control of metabolite efflux in microbial cell factories: current advances and future prospects. In El-Mansi EMT, Nielsen J, Mousdale D, Allman T, Carlson R. (editors) Fermentation Microbiology and Biotechnology, 4th ed. Boca Raton: CRC Press; 2019 pp 117–138
    [Google Scholar]
  76. Koronakis V. TolC - the bacterial exit duct for proteins and drugs. FEBS Lett 2003; 555:66–71 [View Article]
    [Google Scholar]
  77. Du D, Wang Z, James NR, Voss JE, Klimont E et al. Structure of the AcrAB–TolC multidrug efflux pump. Nature 2014; 509:512–515 [View Article]
    [Google Scholar]
  78. Krishnamoorthy G, Tikhonova EB, Dhamdhere G, Zgurskaya HI. On the role of TolC in multidrug efflux: the function and assembly of AcrAB-TolC tolerate significant depletion of intracellular TolC protein. Mol Microbiol 2013; 87:982–997 [View Article]
    [Google Scholar]
  79. Zgurskaya HI, Krishnamoorthy G, Ntreh A, Lu S. Mechanism and function of the outer membrane channel TolC in multidrug resistance and physiology of enterobacteria. Front Microbiol 2011; 2:189 [View Article]
    [Google Scholar]
  80. Zgurskaya HI, Rybenkov VV, Krishnamoorthy G, Leus IV. Trans-envelope multidrug efflux pumps of Gram-negative bacteria and their synergism with the outer membrane barrier. Res Microbiol 2018
    [Google Scholar]
  81. Yamamoto K, Tamai R, Yamazaki M, Inaba T, Sowa Y et al. Substrate-dependent dynamics of the multidrug efflux transporter AcrB of Escherichia coli . Sci Rep 2016; 6:21909 [View Article]
    [Google Scholar]
  82. de Zwaig RN, Luria SE. Genetics and physiology of colicin-tolerant mutants of Escherichia coli . J Bacteriol 1967; 94:1112–1123 [View Article]
    [Google Scholar]
  83. Morona R, Reeves P. The tolC locus of Escherichia coli affects the expression of three major outer membrane proteins. J Bacteriol 1982; 150:1016–1023 [View Article]
    [Google Scholar]
  84. Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E et al. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF Archive): unique resources for biological research. DNA Res 2005; 12:291–299 [View Article]
    [Google Scholar]
  85. Mori H, Baba T, Yokoyama K, Takeuchi R, Nomura W. Identification of essential genes and synthetic lethal gene combinations in Escherichia coli K-12. Methods Mol Biol 2015; 1279:45–65
    [Google Scholar]
  86. Forster S, Thumser AE, Hood SR, Plant N. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS One 2012; 7:e33253 [View Article]
    [Google Scholar]
  87. Haynes MK, Garcia M, Peters R, Waller A, Tedesco P. High-Throughput flow cytometry screening of multidrug efflux systems. Methods Mol Biol 1700; 2018:293–318
    [Google Scholar]
  88. O'Hagan S, Kell DB. Structural similarities between some common fluorophores used in biology and marketed drugs, endogenous metabolites, and natural products. bioRxiv 2019; 834325:
    [Google Scholar]
  89. Troutman MD, Thakker DR. Rhodamine 123 requires carrier-mediated influx for its activity as a P-glycoprotein substrate in Caco-2 cells. Pharm Res 2003; 20:1192–1199 [View Article]
    [Google Scholar]
  90. Jernaes MW, Steen HB. Staining ofEscherichia coli for flow cytometry: influx and efflux of ethidium bromide. Cytometry 1994; 17:302–309 [View Article]
    [Google Scholar]
  91. Walberg M, Gaustad P, Steen HB. Uptake kinetics of nucleic acid targeting dyes in S. aureus, E. faecalis and B. cereus: a flow cytometric study. J Microbiol Methods 1999; 35:167–176 [View Article]
    [Google Scholar]
  92. Sims PJ, Waggoner AS, Wang C-H, Hoffman JF. Mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 1974; 13:3315–3330 [View Article]
    [Google Scholar]
  93. te Winkel JD, Gray DA, Seistrup KH, Hamoen LW, Strahl H. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front Cell Dev Biol 2016; 4:29 [View Article]
    [Google Scholar]
  94. Šíp M, Heřman P, Plášek J, Hrouda V. Transmembrane potential measurement with carbocyanine dye diS-C3-(5): fast fluorescence decay studies. J Photochem Photobiol B 1990; 4:321–328 [View Article]
    [Google Scholar]
  95. Zipper H, Brunner H, Bernhagen J, Vitzthum F. Investigations on DNA intercalation and surface binding by SYBR green I, its structure determination and methodological implications. Nucleic Acids Res 2004; 32:e103 [View Article]
    [Google Scholar]
  96. Nescerecka A, Hammes F, Juhna T. A pipeline for developing and testing staining protocols for flow cytometry, demonstrated with SYBR green I and propidium iodide viability staining. J Microbiol Methods 2016; 131:172–180 [View Article]
    [Google Scholar]
  97. Van Nevel S, Koetzsch S, Proctor CR, Besmer MD, Prest EI et al. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Res 2017; 113:191–206 [View Article]
    [Google Scholar]
  98. Noble RT, Fuhrman JA. Use of SYBR green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 1998; 14:113–118 [View Article]
    [Google Scholar]
  99. Patel A, Noble RT, Steele JA, Schwalbach MS, Hewson I et al. Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR green I. Nat Protoc 2007; 2:269–276 [View Article]
    [Google Scholar]
  100. Grégori Gérald, Citterio S, Ghiani A, Labra M, Sgorbati S et al. Resolution of viable and membrane-compromised bacteria in freshwater and marine waters based on analytical flow cytometry and nucleic acid double staining. Appl Environ Microbiol 2001; 67:4662–4670 [View Article]
    [Google Scholar]
  101. Habtewold T, Duchateau L, Christophides GK. Flow cytometry analysis of the microbiota associated with the midguts of vector mosquitoes. Parasit Vectors 2016; 9:167 [View Article]
    [Google Scholar]
  102. Dragan AI, Pavlovic R, McGivney JB, Casas-Finet JR, Bishop ES et al. SYBR green I: fluorescence properties and interaction with DNA. J Fluoresc 2012; 22:1189–1199 [View Article]
    [Google Scholar]
  103. Bajorath J. Chemoinformatics for Drug Discovery Hoboken: Wiley; 2014
    [Google Scholar]
  104. Bunin BA, Siesel B, Morales GA, Bajorath J. Chemoinformatics: Theory, Practice and Products Heidelberg: Springer; 2007
    [Google Scholar]
  105. Faulon J-L, Bender A. Handbook of Chemoinformatics Algorithms London: CRC Press; 2010
    [Google Scholar]
  106. Leach AR, Gillet VJ. An Introduction to Chemoinformatics, Revised edition. Springer: Dordrecht; 2007
    [Google Scholar]
  107. Oprea TI. Chemoinformatics in Drug Discovery Weinheim: Wiley/VCH; 2004
    [Google Scholar]
  108. Bender A, Glen RC. Molecular similarity: a key technique in molecular informatics. Org Biomol Chem 2004; 2:3204–3218 [View Article]
    [Google Scholar]
  109. Monev V. Introduction to similarity searching in chemistry. MATCH-Commun Math Comput Chem 2004; 51:7–38
    [Google Scholar]
  110. Willett P. The calculation of molecular structural similarity: principles and practice. Mol Inform 2014; 33:403–413 [View Article]
    [Google Scholar]
  111. Landon MR, Schaus SE. JEDA: joint entropy diversity analysis. An information-theoretic method for choosing diverse and representative subsets from combinatorial libraries. Mol Divers 2006; 10:333–339 [View Article]
    [Google Scholar]
  112. Weidlich IE, Filippov IV. Using the Gini coefficient to measure the chemical diversity of small-molecule libraries. J Comput Chem 2016; 37:2091–2097 [View Article]
    [Google Scholar]
  113. O'Hagan S, Kell DB. MetMaxStruct: a Tversky-similarity-based strategy for analysing the (sub)structural similarities of drugs and endogenous metabolites. Front Pharmacol 2016; 7:266 [View Article]
    [Google Scholar]
  114. O’Hagan S, Kell DB. Analysing and navigating natural products space for generating small, diverse, but representative chemical libraries. Biotechnol J 2018; 13:1700503 [View Article]
    [Google Scholar]
  115. Hockney RC. Recent developments in heterologous protein production in Escherichia coli . Trends Biotechnol 1994; 12:456–463 [View Article]
    [Google Scholar]
  116. Grenier F, Matteau D, Baby V, Rodrigue S. Complete genome sequence of Escherichia coli BW25113. Genome Announc 2014; 2:e01038-14 16 10 2014 [View Article][PubMed]
    [Google Scholar]
  117. Cardinale S, Tueros FG, Sommer MOA. Genetic-Metabolic coupling for targeted metabolic engineering. Cell Rep 2017; 20:1029–1037 [View Article][PubMed]
    [Google Scholar]
  118. Cardinale S, Cambray G. Genome-wide analysis of E. coli cell-gene interactions. BMC Syst Biol 2017; 11:112 [View Article][PubMed]
    [Google Scholar]
  119. Sargentini NJ, Gularte NP, Hudman DA. Screen for genes involved in radiation survival of Escherichia coli and construction of a reference database. Mutat Res 2016; 793-794:1–14 [View Article][PubMed]
    [Google Scholar]
  120. Saier MH, Reddy VS, Tamang DG, Västermark A, Västermark A. The transporter classification database. Nucleic Acids Res 2014; 42:D251–D258 [View Article][PubMed]
    [Google Scholar]
  121. Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C et al. The transporter classification database (tcdB): recent advances. Nucleic Acids Res 2016; 44:D372–D379 [View Article][PubMed]
    [Google Scholar]
  122. Herzberg M, Kaye IK, Peti W, Wood TK. YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J Bacteriol 2006; 188:587–598 [View Article][PubMed]
    [Google Scholar]
  123. Yamamoto K, Nonaka G, Ozawa T, Takumi K, Ishihama A. Induction of the Escherichia coli yijE gene expression by cystine. Biosci Biotechnol Biochem 2015; 79:218–222 [View Article][PubMed]
    [Google Scholar]
  124. Masi M, Pagès J-M. Structure, function and regulation of outer membrane proteins involved in drug transport in Enterobactericeae: the OmpF/C - TolC Case. Open Microbiol J 2013; 7:22–33 [View Article][PubMed]
    [Google Scholar]
  125. Müller RT, Pos KM. The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump. Biol Chem 2015; 396:1083–1089 [View Article][PubMed]
    [Google Scholar]
  126. Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2018; 169:425-431 [View Article][PubMed]
    [Google Scholar]
  127. Featherstone DE, Broadie K. Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. Bioessays 2002; 24:267–274 [View Article][PubMed]
    [Google Scholar]
  128. Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M et al. Phenotypic landscape of a bacterial cell. Cell 2011; 144:143–156 [View Article][PubMed]
    [Google Scholar]
  129. Theodoulou FL, Miller AJ. Xenopus oocytes as a heterologous expression system. Methods Mol Biol 1995; 49:317–340 [View Article][PubMed]
    [Google Scholar]
  130. Darbani B, Stovicek V, van der Hoek SA, Borodina I. Engineering energetically efficient transport of dicarboxylic acids in yeast Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 2019; 116:19415–19420 [View Article][PubMed]
    [Google Scholar]
  131. Kaprelyants AS, Kell DB. Rapid assessment of bacterial viability and vitality by rhodamine 123 and flow cytometry. J Appl Bacteriol 1992; 72:410–422 [View Article]
    [Google Scholar]
  132. Mason DJ, Shanmuganathan S, Mortimer FC, Gant VA. A fluorescent Gram stain for flow cytometry and epifluorescence microscopy. Appl Environ Microbiol 1998; 64:2681–2685 [View Article][PubMed]
    [Google Scholar]
  133. Currin A, Swainston N, Day PJ, Kell DB. SpeedyGenes: a novel approach for the efficient production of error-corrected, synthetic gene libraries. Protein Eng Design Sel 2014; 27:273–280
    [Google Scholar]
  134. Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172–1239 [View Article][PubMed]
    [Google Scholar]
  135. Currin A, Kwok J, Sadler JC, Bell EL, Swainston N et al. GeneORator: an effective strategy for navigating protein sequence space more efficiently through Boolean OR-type DNA libraries. ACS Synth Biol 2019; 8:1371–1378 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001016
Loading
/content/journal/micro/10.1099/mic.0.001016
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error