- Volume 166, Issue 2, 2020
Volume 166, Issue 2, 2020
- Editorial
-
- Review
-
-
-
Metabolic networks of the human gut microbiota
Susannah Selber-Hnatiw, Tarin Sultana, W. Tse, Niki Abdollahi, Sheyar Abdullah, Jalal Al Rahbani, Diala Alazar, Nekoula Jean Alrumhein, Saro Aprikian, Rimsha Arshad, Jean-Daniel Azuelos, Daphney Bernadotte, Natalie Beswick, Hana Chazbey, Kelsey Church, Emaly Ciubotaru, Lora D'Amato, Tavia Del Corpo, Jasmine Deng, Briana Laura Di Giulio, Diana Diveeva, Elias Elahie, James Gordon Marcel Frank, Emma Furze, Rebecca Garner, Vanessa Gibbs, Rachel Goldberg-Hall, Chaim Jacob Goldman, Fani-Fay Goltsios, Kevin Gorjipour, Taylor Grant, Brittany Greco, Nadir Guliyev, Andrew Habrich, Hillary Hyland, Nabila Ibrahim, Tania Iozzo, Anastasia Jawaheer-Fenaoui, Julia Jane Jaworski, Maneet Kaur Jhajj, Jermaine Jones, Rodney Joyette, Samad Kaudeer, Shawn Kelley, Shayesteh Kiani, Marylin Koayes, Abby Johanna Amy-Aminta Léna Kpata, Shannon Maingot, Sara Martin, Kelly Mathers, Sean McCullogh, Kelly McNamara, James Mendonca, Karamat Mohammad, Sharara Arezo Momtaz, Thiban Navaratnarajah, Kathy Nguyen-Duong, Mustafa Omran, Angela Ortiz, Anjali Patel, Kahlila Paul-Cole, Paul-Arthur Plaisir, Jessica Alexandra Porras Marroquin, Ashlee Prevost, Angela Quach, Aries John Rafal, Rewaparsad Ramsarun, Sami Rhnima, Lydia Rili, Naomi Safir, Eugenie Samson, Rebecca Rose Sandiford, Stefano Secondi, Stephanie Shahid, Mojdeh Shahroozi, Fily Sidibé, Megan Smith, Alina Maria Sreng Flores, Anabel Suarez Ybarra, Rebecca Sénéchal, Tarek Taifour, Lawrence Tang, Adam Trapid, Maxim Tremblay Potvin, Justin Wainberg, Dani Ni Wang, Mischa Weissenberg, Allison White, Gabrielle Wilkinson, Brittany Williams, Joshua Roth Wilson, Johanna Zoppi, Katerina Zouboulakis and Chiara GamberiThe human gut microbiota controls factors that relate to human metabolism with a reach far greater than originally expected. Microbial communities and human (or animal) hosts entertain reciprocal exchanges between various inputs that are largely controlled by the host via its genetic make-up, nutrition and lifestyle. The composition of these microbial communities is fundamental to supply metabolic capabilities beyond those encoded in the host genome, and contributes to hormone and cellular signalling that support the dynamic adaptation to changes in food availability, environment and organismal development. Poor functional exchange between the microbial communities and their human host is associated with dysbiosis, metabolic dysfunction and disease. This review examines the biology of the dynamic relationship between the reciprocal metabolic state of the microbiota–host entity in balance with its environment (i.e. in healthy states), the enzymatic and metabolic changes associated with its imbalance in three well-studied diseases states such as obesity, diabetes and atherosclerosis, and the effects of bariatric surgery and exercise.
-
-
-
-
A highly processive actinobacterial topoisomerase I – thoughts on Streptomyces’ demand for an enzyme with a unique C-terminal domain
More LessTopoisomerase I (TopA) is an essential enzyme that is required to remove excess negative supercoils from chromosomal DNA. Actinobacteria encode unusual TopA homologues with a unique C-terminal domain that contains lysine repeats and confers high enzyme processivity. Interestingly, the longest stretch of lysine repeats was identified in TopA from Streptomyces , environmental bacteria that undergo complex differentiation and produce a plethora of secondary metabolites. In this review, we aim to discuss potential advantages of the lysine repeats in Streptomyces TopA. We speculate that the chromosome organization, transcriptional regulation and lifestyle of these species demand a highly processive but also fine-tuneable relaxase. We hypothesize that the unique TopA provides flexible control of chromosomal topology and globally regulates gene expression.
-
- Cell Biology
-
-
-
Mitogen-activated protein kinase regulation of the phosphodiesterase RegA in early Dictyostelium development
More LessMitogen-activated protein kinase (MAPK) regulation of cAMP-specific phosphodiesterase function has been demonstrated in mammalian cells and suspected to occur in other eukaryotes. Epistasis analysis in the soil amoeba Dictyostelium discoideum suggests the atypical MAPK Erk2 downregulates the function of the cAMP-specific phosphodiesterase RegA to regulate progression of the developmental life cycle. A putative MAPK docking motif located near a predicted MAPK phosphorylation site was characterized for contributions to RegA function and binding to Erk2 because a similar docking motif has been previously characterized in the mammalian PDE4D phosphodiesterase. The overexpression of RegA with alterations to this docking motif (RegAD–) restored RegA function to regA– cells based on developmental phenotypes, but low-level expression of RegAD– from the endogenous regA promoter failed to rescue wild-type morphogenesis. Co-immunoprecipitation analysis indicated that Erk2 associates with both RegA and RegAD–, suggesting the docking motif is not required for this association. Epistasis analysis between regA and the only other Dictyostelium MAPK, erk1, suggests Erk1 and RegA can function in different pathways but that some erk1- phenotypes may require cAMP signalling. These results imply that MAPK downregulation of RegA in Dictyostelium is accomplished through a different mechanism than MAPK regulation of cAMP-specific phosphodiesterases in mammalian cells and that the regulation in Dictyostelium does not require a proximal MAPK docking motif.
-
-
- Genomics and Systems Biology
-
-
-
Adaptive laboratory evolution of Escherichia coli under acid stress
The ability of Escherichia coli to tolerate acid stress is important for its survival and colonization in the human digestive tract. Here, we performed adaptive laboratory evolution of the laboratory strain E. coli K-12 MG1655 at pH 5.5 in glucose minimal medium. After 800 generations, six independent populations under evolution had reached 18.0 % higher growth rates than their starting strain at pH 5.5, while maintaining comparable growth rates to the starting strain at pH 7. We characterized the evolved strains and found that: (1) whole genome sequencing of isolated clones from each evolved population revealed mutations in rpoC appearing in five of six sequenced clones; and (2) gene expression profiles revealed different strategies to mitigate acid stress, which are related to amino acid metabolism and energy production and conversion. Thus, a combination of adaptive laboratory evolution, genome resequencing and expression profiling revealed, on a genome scale, the strategies that E. coli uses to mitigate acid stress.
-
-
-
-
Prediction of novel non-coding RNAs relevant for the growth of Pseudomonas putida in a bioreactor
Pseudomonas putida is a micro-organism with great potential for industry due to its stress-endurance traits and easy manipulation of the metabolism. However, optimization is still required to improve production yields. In the last years, manipulation of bacterial small non-coding RNAs (ncRNAs) has been recognized as an effective tool to improve the production of industrial compounds. So far, very few ncRNAs are annotated in P. putida beyond the generally conserved. In the present study, P. putida was cultivated in a two-compartment scale-down bioreactor that simulates large-scale industrial bioreactors. We performed RNA-Seq of samples collected at distinct locations and time-points to predict novel and potentially important ncRNAs for the adaptation of P. putida to bioreactor stress conditions. Instead of using a purely genomic approach, we have rather identified regions of putative ncRNAs with high expression levels using two different programs (Artemis and sRNA detect). Only the regions identified with both approaches were considered for further analysis and, in total, 725 novel ncRNAs were predicted. We also found that their expression was not constant throughout the bioreactor, showing different patterns of expression with time and position. This is the first work focusing on the ncRNAs whose expression is triggered in a bioreactor environment. This information is of great importance for industry, since it provides possible targets to engineer more effective P. putida strains for large-scale production.
-
- Host-microbe Interaction
-
-
-
Stability of the Salmonella Typhimurium rcsC11 mutant under different stress conditions
More LessThe virulence genes of Salmonella are modulated during infection by several regulatory systems, and the RcsCDB system is one of the most important of these. The S. Typhimurium EG14873 (rcsC11) strain harbours the rcsC11 point mutation, displaying a constitutive activation of this system, which is characterized by mucoid colonies and attenuated virulence phenotypes. In this work, the stability of the rcsC11 mutation was analysed under stress conditions. Under acid and anaerobic stresses, we observed the appearance of small and non-mucoid colonies of the rcsC11 strain. The sequencing of the rcsC gene from these colonies showed that the mutation is conserved. Moreover, we found that small colonies were also generated when the wild-type strain grew in acid and anaerobic conditions. It is worth noting that the transition from normal to atypical colonies of both strains only took place after several days of incubation and was not observed during eukaryotic cell infection. Therefore, the appearance of these atypical colonies is a characteristic feature of S. Typhimurium strains under stressful situations and does not involve a reversion of the rcsC11 allele and nor does it imply any risk to mammalian cells. Therefore, we propose that the S. Typhimurium rcsC11 strain is a good candidate for the development of attenuated vaccines.
-
-
-
-
A structure-function analysis of interspecies antagonism by the 2-heptyl-4-alkyl-quinolone signal molecule from Pseudomonas aeruginosa
In recent years, the alkyl-quinolone molecular framework has already provided a rich source of bioactivity for the development of novel anti-infective compounds. Based on the quorum-sensing signalling molecules 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS) from the nosocomial pathogen Pseudomonas aeruginosa , modifications have been developed with markedly enhanced anti-biofilm bioactivity towards important fungal and bacterial pathogens, including Candida albicans and Aspergillus fumigatus. Here we show that antibacterial activity of HHQ against Vibrionaceae is species-specific and it requires an exquisite level of structural fidelity within the alkyl-quinolone molecular framework. Antibacterial activity was demonstrated against the serious human pathogens Vibrio vulnificus and Vibrio cholerae as well as a panel of bioluminescent squid symbiont Allivibrio fischeri isolates. In contrast, Vibrio parahaemolyticus growth and biofilm formation was unaffected in the presence of HHQ and all the structural variants tested. In general, modification to almost all of the molecule except the alkyl-chain end, led to loss of activity. This suggests that the bacteriostatic activity of HHQ requires the concerted action of the entire framework components. The only exception to this pattern was deuteration of HHQ at the C3 position. HHQ modified with a terminal alkene at the quinolone alkyl chain retained bacteriostatic activity and was also found to activate PqsR signalling comparable to the native agonist. The data from this integrated analysis provides novel insights into the structural flexibility underpinning the signalling activity of the complex alkyl-quinolone molecular communication system.
-
- Physiology and Metabolism
-
-
-
Mycobacterium smegmatis moxifloxacin persister cells produce high levels of hydroxyl radical, generating genetic resisters selectable not only with moxifloxacin, but also with ethambutol and isoniazid
Bacterial antibiotic persister cells tolerate lethal concentrations of antibiotics but emerge as the antibiotic-sensitive population upon antibiotics withdrawal. However, the possibility of antibiotic-resistant genetic mutants emerging from the antibiotic persister population in the continued exposure to microbicidal concentrations of antibiotics needed investigation. We explored this possibility using the fast-growing Mycobacterium smegmatis as a model organism for Mycobacterium tuberculosis biology, as it is known to incur antibiotic-resistant mutations identical to and at identical target positions as found in the clinical isolates of M. tuberculosis . Here we report that the moxifloxacin (MXF) persister population generate significantly elevated levels of hydroxyl radical. Hydroxyl radical being a sequence-non-specific mutagen, resulted in the emergence of moxifloxacin-resistant genetic mutants at 8-log10 higher frequency from the persister population. Luria–Delbruck experiment (in modified format) confirmed that MXF-resistant mutants emerged de novo from the persister population and were not pre-existent. The nature of the mutations in the quinolone resistance determining region indicated that they were generated due to oxidative stress. These mutations were identical to and at identical positions as found in the clinical isolates of MXF-resistant M. tuberculosis . Interestingly, from the MXF persister population, resisters to microbicidal concentrations of ethambutol and isoniazid could also be selected. These observations implied that the significantly high levels of hydroxyl radical might have generated genome-wide mutations, creating a pool of mutants in the MXF persister population, facilitating selection of resisters to other antibiotics also. These findings may be of clinical relevance to the emergence of drug-resistant strains during prolonged tuberculosis treatment regimen with high doses of multiple antibiotics.
-
-
-
-
Reductive tricarboxylic acid cycle enzymes and reductive amino acid synthesis pathways contribute to electron balance in a Rhodospirillum rubrum Calvin-cycle mutant
Purple non-sulfur bacteria (PNSB) use light for energy and organic substrates for carbon and electrons when growing photoheterotrophically. This lifestyle generates more reduced electron carriers than are required for biosynthesis, even during consumption of some of the most oxidized organic substrates like malate and fumarate. Reduced electron carriers not used in biosynthesis must still be oxidized for photoheterotrophic growth to occur. Diverse PNSB commonly rely on the CO2-fixing Calvin cycle to oxidize reduced electron carriers. Some PNSB also produce H2 or reduce terminal electron acceptors as alternatives to the Calvin cycle. Rhodospirillum rubrum Calvin-cycle mutants defy this trend by growing phototrophically on malate or fumarate without H2 production or access to terminal electron acceptors. We used 13C-tracer experiments to examine how a Rs. rubrum Calvin-cycle mutant maintains electron balance under such conditions. We detected the reversal of some tricarboxylic acid cycle enzymes, carrying reductive flux from malate or fumarate to αKG. This pathway and the reductive synthesis of αKG-derived amino acids are likely important for electron balance, as supplementing the growth medium with αKG-derived amino acids prevented Rs. rubrum Calvin-cycle-mutant growth unless a terminal electron acceptor was provided. Flux estimates also suggested that the Calvin-cycle mutant preferentially synthesized isoleucine using the reductive threonine-dependent pathway instead of the less-reductive citramalate-dependent pathway. Collectively, our results suggest that alternative biosynthetic pathways can contribute to electron balance within the constraints of a relatively constant biomass composition.
-
- Regulation
-
-
-
A corepressor participates in LexA-independent regulation of error-prone polymerases in Acinetobacter
More LessThe DNA damage response of the multidrug-resistant pathogen Acinetobacter baumannii , which induces mutagenic UmuD′2C error-prone polymerases, differs from that of many bacteria. Acinetobacter species lack a LexA repressor, but induce gene transcription after DNA damage. One regulator, UmuDAb, binds to and represses the promoters of the multiple A. baumannii ATCC 17978 umuDC alleles and the divergently transcribed umuDAb and ddrR genes. ddrR is unique to the genus Acinetobacter and of unknown function. 5' RACE (rapid amplification of cDNA ends) PCR mapping of the umuDAb and ddrR transcriptional start sites revealed that their −35 promoter elements overlapped the UmuDAb binding site, suggesting that UmuDAb simultaneously repressed expression of both genes by blocking polymerase access. This coordinated control of ddrR and umuDAb suggested that ddrR might also regulate DNA damage-inducible gene transcription. RNA-sequencing experiments in 17 978 ddrR − cells showed that ddrR regulated approximately 25 % (n=39) of the mitomycin C-induced regulon, with umuDAb coregulating 17 of these ddrR-regulated genes. Eight genes (the umuDC polymerases, umuDAb and ddrR) were de-repressed in the absence of DNA damage, and nine genes were uninduced in the presence of DNA damage, in both ddrR and umuDAb mutant strains. These data suggest ddrR has multiple roles, both as a co-repressor and as a positive regulator of DNA damage-inducible gene transcription. Additionally, 57 genes were induced by mitomycin C in the ddrR mutant but not in wild-type cells. This regulon contained multiple genes for DNA replication, recombination and repair, transcriptional regulators, RND efflux, and transport. This study uncovered another regulator of the atypical DNA damage response of this genus, to help describe how this pathogen acquires drug resistance through its expression of the error-prone polymerases under DdrR and UmuDAb control.
-
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)