1887

Abstract

The human gut microbiota controls factors that relate to human metabolism with a reach far greater than originally expected. Microbial communities and human (or animal) hosts entertain reciprocal exchanges between various inputs that are largely controlled by the host via its genetic make-up, nutrition and lifestyle. The composition of these microbial communities is fundamental to supply metabolic capabilities beyond those encoded in the host genome, and contributes to hormone and cellular signalling that support the dynamic adaptation to changes in food availability, environment and organismal development. Poor functional exchange between the microbial communities and their human host is associated with dysbiosis, metabolic dysfunction and disease. This review examines the biology of the dynamic relationship between the reciprocal metabolic state of the microbiota–host entity in balance with its environment (i.e. in healthy states), the enzymatic and metabolic changes associated with its imbalance in three well-studied diseases states such as obesity, diabetes and atherosclerosis, and the effects of bariatric surgery and exercise.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000853
2019-12-04
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/10.1099/mic.0.000853/mic000853.html?itemId=/content/journal/micro/10.1099/mic.0.000853&mimeType=html&fmt=ahah

References

  1. Helander HF, Fändriks L. Surface area of the digestive tract-revisited. Scand J Gastroenterol 2014;49: 681– 689 [CrossRef]
    [Google Scholar]
  2. Kocełak P, Zak-Gołąb A, Zahorska-Markiewicz B, Aptekorz M, Zientara M et al. Resting energy expenditure and gut microbiota in obese and normal weight subjects. Eur Rev Med Pharmacol Sci 2013;17: 2816– 2821
    [Google Scholar]
  3. De Paepe K, Verspreet J, Verbeke K, Raes J, Courtin CM et al. Introducing insoluble wheat bran as a gut microbiota niche in an in vitro dynamic gut model stimulates propionate and butyrate production and induces colon region specific shifts in the luminal and mucosal microbial community. Environ Microbiol 2018;20: 3406– 3426 [CrossRef]
    [Google Scholar]
  4. Walujkar SA, Kumbhare SV, Marathe NP, Patangia DV, Lawate PS et al. Molecular profiling of mucosal tissue associated microbiota in patients manifesting acute exacerbations and remission stage of ulcerative colitis. World J Microbiol Biotechnol 2018;34: 76 [CrossRef]
    [Google Scholar]
  5. Hannigan GD, Duhaime MB, Koutra D, Schloss PD. Biogeography and environmental conditions shape bacteriophage-bacteria networks across the human microbiome. PLoS Comput Biol 2017;14: e1006099 [CrossRef]
    [Google Scholar]
  6. Bergeron N, Williams PT, Lamendella R, Faghihnia N, Grube A et al. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk. Br J Nutr 2016;116: 2020– 2029 [CrossRef]
    [Google Scholar]
  7. Arrieta M-C, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The intestinal microbiome in early life: health and disease. Front Immunol 2014;5: [CrossRef]
    [Google Scholar]
  8. Zhang X, Shen D, Fang Z, Jie Z, Qiu X et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 2013;8: e71108 [CrossRef]
    [Google Scholar]
  9. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL et al. The human microbiome project: a community resource for the healthy human microbiome. PLoS Biol 2012;10: e1001377 [CrossRef]
    [Google Scholar]
  10. Mirande C, Kadlecikova E, Matulova M, Capek P, Bernalier-Donadille A et al. Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1A and Roseburia intestinalis XB6B4 from the human intestine. J Appl Microbiol 2010;109: 451– 460 [CrossRef]
    [Google Scholar]
  11. Tong M, Li X, Wegener Parfrey L, Roth B, Ippoliti A et al. A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. PLoS One 2013;8: e80702 [CrossRef]
    [Google Scholar]
  12. Petriz BA, Castro AP, Almeida JA, Gomes CP, Fernandes GR et al. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics 2014;15: 511 [CrossRef]
    [Google Scholar]
  13. Khan MT, Nieuwdorp M, Bäckhed F. Microbial modulation of insulin sensitivity. Cell Metab 2014;20: 753– 760 [CrossRef]
    [Google Scholar]
  14. Gordon JI, Hooper LV, McNevin MS, Wong M, Bry L. Epithelial cell growth and differentiation. III. promoting diversity in the intestine: conversations between the microflora, epithelium, and diffuse GALT. Am J Physiol 1997;273: G565– G570 [CrossRef]
    [Google Scholar]
  15. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 2011;108: 4578– 4585 [CrossRef]
    [Google Scholar]
  16. McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 2011;3: 106ra106 [CrossRef]
    [Google Scholar]
  17. McNulty NP, Wu M, Erickson AR, Pan C, Erickson BK et al. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol 2013;11: e10001637 [CrossRef]
    [Google Scholar]
  18. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012;489: 242– 249 [CrossRef]
    [Google Scholar]
  19. Ussar S, Griffin NW, Bezy O, Fujisaka S, Vienberg S et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab 2015;22: 516– 530 [CrossRef]
    [Google Scholar]
  20. Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010;5: e9085 [CrossRef]
    [Google Scholar]
  21. Karlsson F, Tremaroli V, Nielsen J, Bäckhed F. Assessing the human gut microbiota in metabolic diseases. Diabetes 2013;62: 3341– 3349 [CrossRef]
    [Google Scholar]
  22. Biros E, Karan M, Golledge J. Genetic variation and atherosclerosis. Curr Genomics 2008;9: 29– 42 [CrossRef]
    [Google Scholar]
  23. Federico A, Dallio M, Loguercio C. Silymarin/Silybin and chronic liver disease: a marriage of many years. Molecules 2017;22: 191 [CrossRef]
    [Google Scholar]
  24. Frezza EE, Wachtel MS, Chiriva-Internati M. Influence of obesity on the risk of developing colon cancer. Gut 2006;55: 285– 291 [CrossRef]
    [Google Scholar]
  25. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 2005;102: 11070– 11075 [CrossRef]
    [Google Scholar]
  26. Samuel BS, Shaito A, Motoike T, Rey FE, Bäckhed F et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, GPR41. Proc Natl Acad Sci USA 2008;105: 16767– 16772 [CrossRef]
    [Google Scholar]
  27. Dai ZL, Wu G, Zhu WY. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 2011;16: 1768– 1786 [CrossRef]
    [Google Scholar]
  28. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013;54: 2325– 2340 [CrossRef]
    [Google Scholar]
  29. Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 2012;95: 50– 60 [CrossRef]
    [Google Scholar]
  30. Macfarlane GT, Cummings JH, Allison C. Protein degradation by human intestinal bacteria. Microbiology 1986;132: 1647– 1656 [CrossRef]
    [Google Scholar]
  31. Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci USA 2011;108: 4523– 4530 [CrossRef]
    [Google Scholar]
  32. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012;488: 621– 626 [CrossRef]
    [Google Scholar]
  33. Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 2012;487: 477– 481 [CrossRef]
    [Google Scholar]
  34. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature 2006;444: 1022– 1023 [CrossRef]
    [Google Scholar]
  35. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444: 1027– 1031 [CrossRef]
    [Google Scholar]
  36. Vinjé S, Stroes E, Nieuwdorp M, Hazen SL. The gut microbiome as novel cardio-metabolic target: the time has come!. Eur Heart J 2014;35: 883– 887 [CrossRef]
    [Google Scholar]
  37. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004;101: 15718– 15723 [CrossRef]
    [Google Scholar]
  38. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 2013;24: 160– 168 [CrossRef]
    [Google Scholar]
  39. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 2009;106: 3698– 3703 [CrossRef]
    [Google Scholar]
  40. Selber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H et al. Human gut microbiota: toward an ecology of disease. Front Microbiol 2017;8: 1265 [CrossRef]
    [Google Scholar]
  41. Chassaing B, Vijay-Kumar M, Gewirtz AT. How diet can impact gut microbiota to promote or endanger health. Curr Opin Gastroenterol 2017;33: 417– 421 [CrossRef]
    [Google Scholar]
  42. Kim S, Jazwinski SM. The gut microbiota and healthy aging: a mini-review. Gerontology 2018;64: 513– 520 [CrossRef]
    [Google Scholar]
  43. Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 2016;19: 731– 743 [CrossRef]
    [Google Scholar]
  44. Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci USA 2010;107: 7503– 7508 [CrossRef]
    [Google Scholar]
  45. Murphy TM, Wong CCY, Arseneault L, Burrage J, Macdonald R et al. Methylomic markers of persistent childhood asthma: a longitudinal study of asthma-discordant monozygotic twins. Clin Epigenetics 2015;7: 130 [CrossRef]
    [Google Scholar]
  46. Xie H, Guo R, Zhong H, Feng Q, Lan Z et al. Shotgun Metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst 2016;3: 572– 584 [CrossRef]
    [Google Scholar]
  47. Zhou M, He J, Shen Y, Zhang C, Wang J et al. New frontiers in genetics, gut microbiota, and immunity: a Rosetta stone for the pathogenesis of inflammatory bowel disease. Biomed Res Int 2017;2017: 8201672 [CrossRef]
    [Google Scholar]
  48. Dong Q, Xin Y, Wang L, Meng X, Yu X et al. Characterization of gastric microbiota in twins. Curr Microbiol 2017;74: 224– 229 [CrossRef]
    [Google Scholar]
  49. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O et al. Human genetics shape the gut microbiome. Cell 2014;159: 789– 799 [CrossRef]
    [Google Scholar]
  50. Muegge BD, Kuczynski J, Knights D, Clemente JC, González A et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011;332: 970– 974 [CrossRef]
    [Google Scholar]
  51. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K et al. Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut 2011;60: 631– 637 [CrossRef]
    [Google Scholar]
  52. Baumgart DC, Sandborn WJ. Crohn's disease. The Lancet 2012;380: 1590– 1605 [CrossRef]
    [Google Scholar]
  53. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 2009;15: 1183– 1189 [CrossRef]
    [Google Scholar]
  54. Favier C, Neut C, Mizon C, Cortot A, Colombel JF et al. Fecal beta-D-galactosidase production and bifidobacteria are decreased in Crohn's disease. Dig Dis Sci 1997;42: 817– 822 [CrossRef]
    [Google Scholar]
  55. Prindiville T, Cantrell M, Wilson KH. Ribosomal DNA sequence analysis of mucosa-associated bacteria in Crohn's disease. Inflamm Bowel Dis 2004;10: 824– 833 [CrossRef]
    [Google Scholar]
  56. Martinez-Medina M, Aldeguer X, Gonzalez-Huix F, Acero D, Garcia-Gil LJ. Abnormal microbiota composition in the ileocolonic mucosa of Crohn's disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm Bowel Dis 2006;12: 1136– 1145 [CrossRef]
    [Google Scholar]
  57. Van de Merwe JP, Schröder AM, Wensinck F, Hazenberg MP. The obligate anaerobic faecal flora of patients with Crohn's disease and their first-degree relatives. Scand J Gastroenterol 1988;23: 1125– 1131 [CrossRef]
    [Google Scholar]
  58. Van de Merwe JP, Stegeman JH. Binding of Coprococcus comes to the Fc portion of IgG. A possible role in the pathogenesis of Crohn's disease?. Eur J Immunol 1985;15: 860– 863 [CrossRef]
    [Google Scholar]
  59. El Aidy S, Hooiveld G, Tremaroli V, Bäckhed F, Kleerebezem M. The gut microbiota and mucosal homeostasis. Gut Microbes 2013;4: 118– 124 [CrossRef]
    [Google Scholar]
  60. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011;5: 220– 230 [CrossRef]
    [Google Scholar]
  61. Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J 2013;7: 269– 280 [CrossRef]
    [Google Scholar]
  62. Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 2014;8: 2218– 2230 [CrossRef]
    [Google Scholar]
  63. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505: 559– 563 [CrossRef]
    [Google Scholar]
  64. O'Keefe SJD, Li JV, Lahti L, Ou J, Carbonero F et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 2015;6: 6342 [CrossRef]
    [Google Scholar]
  65. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 2013;8: e66019 [CrossRef]
    [Google Scholar]
  66. Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 2015;26: 26164 [CrossRef]
    [Google Scholar]
  67. Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem 2001;276: 16683– 16689 [CrossRef]
    [Google Scholar]
  68. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M et al. High-Fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 2009;137: 1716– 1724 [CrossRef]
    [Google Scholar]
  69. Calder PC. Fatty acids and inflammation: the cutting edge between food and pharma. Eur J Pharmacol 2011;668: S50– S58 [CrossRef]
    [Google Scholar]
  70. Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 2012;142: 1100– 1101 [CrossRef]
    [Google Scholar]
  71. Huang S, Rutkowsky JM, Snodgrass RG, Ono-Moore KD, Schneider DA et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res 2012;53: 2002– 2013 [CrossRef]
    [Google Scholar]
  72. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015;519: 92– 96 [CrossRef]
    [Google Scholar]
  73. Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 2017;66: 1414– 1427 [CrossRef]
    [Google Scholar]
  74. Pepino MY. Metabolic effects of non-nutritive sweeteners. Physiol Behav 2015;152: 450– 455 [CrossRef]
    [Google Scholar]
  75. Glendinning JI. Do low-calorie sweeteners promote weight gain in rodents?. Physiol Behav 2016;164: 509– 513 [CrossRef]
    [Google Scholar]
  76. Nettleton JE, Reimer RA, Shearer J. Reshaping the gut microbiota: impact of low calorie sweeteners and the link to insulin resistance?. Physiol Behav 2016;164: 488– 493 [CrossRef]
    [Google Scholar]
  77. Wang Q-P, Lin YQ, Zhang L, Wilson YA, Oyston LJ et al. Sucralose promotes food intake through NPY and a neuronal fasting response. Cell Metab 2016;24: 75– 90 [CrossRef]
    [Google Scholar]
  78. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014;514: 181– 186 [CrossRef]
    [Google Scholar]
  79. Anderson RL, Kirkland JJ. The effect of sodium saccharin in the diet on caecal microflora. Food Cosmet Toxicol 1980;18: 353– 355 [CrossRef]
    [Google Scholar]
  80. Abou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SS. Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats. J Toxicol Environ Health A 2008;71: 1415– 1429 [CrossRef]
    [Google Scholar]
  81. Wang QP, Browman D, Herzog H, Neely GG. Non-Nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. PLoS One 2018;13: e0199080 [CrossRef]
    [Google Scholar]
  82. Suez J, Korem T, Zilberman-Schapira G, Segal E, Elinav E. Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes 2015;6: 149– 155 [CrossRef]
    [Google Scholar]
  83. Palmnäs MSA, Cowan TE, Bomhof MR, Su J, Reimer RA et al. Low-Dose aspartame consumption differentially affects gut Microbiota-Host metabolic interactions in the diet-induced obese rat. PLoS One 2014;9: e10984 [CrossRef]
    [Google Scholar]
  84. Pfeffer M, Ziesenitz SC, Siebert G. Acesulfame K, cyclamate and saccharin inhibit the anaerobic fermentation of glucose by intestinal bacteria. Z Ernährungswiss 1985;24: 231– 235 [CrossRef]
    [Google Scholar]
  85. Young DA, Bowen WH. The influence of sucralose on bacterial metabolism. Am J Gastroenterol 1990;107: 1755
    [Google Scholar]
  86. Bowen WH, Pearson SK. The effects of sucralose, xylitol and sorbitol on remineralization of caries lesions in rats. J Dent Res 1992;71: 1166– 1168 [CrossRef]
    [Google Scholar]
  87. Prashant GM, Patil RB, Nagaraj T, Patel VB. The antimicrobial activity of the three commercially available intense sweeteners against common periodontal pathogens: an in vitro study. J Contemp Dent Pract 2012;13: 749– 752
    [Google Scholar]
  88. Deniņa I, Semjonovs P, Fomina A, Treimane R, Linde R. The influence of stevia glycosides on the growth of Lactobacillus reuteri strains. Lett Appl Microbiol 2014;58: 278– 284 [CrossRef]
    [Google Scholar]
  89. Oppermann JA. Aspartame metabolism in animals In Filer LJ, Stegink F. (editors) Aspartame: Physiology and Biochemistry New York: Marcel Dekker Inc; 1984
    [Google Scholar]
  90. Keller SE, Newberg SS, Krieger TM, Shazer WH. Degradation of aspartame in yogurt related to microbial growth. J Food Sci 1991;56: 21– 23 [CrossRef]
    [Google Scholar]
  91. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987;28: 1221– 1227 [CrossRef]
    [Google Scholar]
  92. Bloemen JG, Venema K, van de Poll MC, Olde Damink SW, Buurman WA et al. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin Nutr 2009;28: 657– 661 [CrossRef]
    [Google Scholar]
  93. Cummings JH, Macfarlane GT. Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr 1997;21: 357– 365 [CrossRef]
    [Google Scholar]
  94. Christiansen CB, Gabe MBN, Svendsen B, Dragsted LO, Rosenkilde MM et al. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Physiol Gastrointest Liver Physiol 2018;315: G53– G65 [CrossRef]
    [Google Scholar]
  95. Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL. Short chain fatty acids and their receptors: new metabolic targets. Transl Res 2013;161: 131– 140 [CrossRef]
    [Google Scholar]
  96. Pouteau E, Meirim I, Métairon S, Fay LB. Acetate, propionate and butyrate in plasma: determination of the concentration and isotopic enrichment by gas chromatography/mass spectrometry with positive chemical ionization. J Mass Spectrom 2001;36: 798– 805 [CrossRef]
    [Google Scholar]
  97. Roediger WE. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 1982;83: 424– 429
    [Google Scholar]
  98. Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011;13: 517– 526 [CrossRef]
    [Google Scholar]
  99. Candido EP, Reeves R, Davie JR. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 1978;14: 105– 113 [CrossRef]
    [Google Scholar]
  100. Sealy L, Chalkley R. The effect of sodium butyrate on histone modification. Cell 1978;14: 115– 121 [CrossRef]
    [Google Scholar]
  101. Vidali G, Boffa LC, Bradbury EM, Allfrey VG. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc Natl Acad Sci USA 1978;75: 2239– 2243 [CrossRef]
    [Google Scholar]
  102. Boffa LC, Vidali G, Mann RS, Allfrey VG. Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J Biol Chem 1978;253: 3364– 3366
    [Google Scholar]
  103. Hinnebusch BF, Meng S, Wu JT, Archer SY, Hodin RA. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J Nutr 2002;132: 1012– 1017 [CrossRef]
    [Google Scholar]
  104. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006;40: 235– 243 [CrossRef]
    [Google Scholar]
  105. Roy CC, Kien CL, Bouthillier L, Levy E. Short-Chain fatty acids: ready for prime time?. Nutr Clin Pract 2006;21: 351– 366 [CrossRef]
    [Google Scholar]
  106. Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients 2011;3: 858– 876 [CrossRef]
    [Google Scholar]
  107. Canfora EE, Jocken JW, Blaak EE. Short-Chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015;11: 577– 591 [CrossRef]
    [Google Scholar]
  108. Cani PD. Human gut microbiome: hopes, threats and promises. Gut 2018;67: 1716– 1725 [CrossRef]
    [Google Scholar]
  109. Cheng D, Xu JH, Li JY, Wang SY, Wu TF et al. Butyrate ameliorated-NLRC3 protects the intestinal barrier in a GPR43-dependent manner. Exp Cell Res 2018;368: 101– 110 [CrossRef]
    [Google Scholar]
  110. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008;57: 1470– 1481 [CrossRef]
    [Google Scholar]
  111. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56: 1761– 1772 [CrossRef]
    [Google Scholar]
  112. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TMS, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 2014;4: e121 [CrossRef]
    [Google Scholar]
  113. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM et al. Short-Chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012;61: 364– 371 [CrossRef]
    [Google Scholar]
  114. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc 2003;62: 67– 72 [CrossRef]
    [Google Scholar]
  115. Ang Z, Ding JL. GPR41 and GPR43 in Obesity and Inflammation - Protective or Causative?. Front Immunol 2016;7: 28 [CrossRef]
    [Google Scholar]
  116. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003;278: 11312– 11319 [CrossRef]
    [Google Scholar]
  117. Karaki SI, Tazoe H, Hayashi H, Kashiwabara H, Tooyama K et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol 2008;39: 135– 142 [CrossRef]
    [Google Scholar]
  118. Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI et al. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic function. J Physiol. Pharmacol Suppl 2008;2: 251– 262
    [Google Scholar]
  119. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009;461: 1282– 1286 [CrossRef]
    [Google Scholar]
  120. Sina C, Gavrilova O, Förster M, Till A, Derer S et al. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol 2009;183: 7514– 7522 [CrossRef]
    [Google Scholar]
  121. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-Chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013;145: 396– 406 [CrossRef]
    [Google Scholar]
  122. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013;341: 569– 573 [CrossRef]
    [Google Scholar]
  123. Masui R, Sasaki M, Funaki Y, Ogasawara N, Mizuno M et al. G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflamm Bowel Dis 2013;19: 2848– 2856 [CrossRef]
    [Google Scholar]
  124. Bjursell M, Admyre T, Göransson M, Marley AE, Smith DM et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2011;300: E211– E220 [CrossRef]
    [Google Scholar]
  125. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013;4: 1829 [CrossRef]
    [Google Scholar]
  126. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014;20: 159– 166 [CrossRef]
    [Google Scholar]
  127. Ge H, Li X, Weiszmann J, Wang P, Baribault H et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 2008;149: 4519– 4526 [CrossRef]
    [Google Scholar]
  128. McNelis JC, Lee YS, Mayoral R, van der Kant R, Johnson AMF et al. Gpr43 potentiates β-cell function in obesity. Diabetes 2015;64: 3203– 3217 [CrossRef]
    [Google Scholar]
  129. Priyadarshini M, Villa SR, Fuller M, Wicksteed B, Mackay CR et al. An Acetate-Specific GPCR, FFAR2, regulates insulin secretion. Mol Endocrinol 2015;29: 1055– 1066 [CrossRef]
    [Google Scholar]
  130. Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes 2015;39: 424– 429 [CrossRef]
    [Google Scholar]
  131. Caylak E. Anorexigenic peptides in health and d isease eLS Chichester: John Wiley & Sons Ltd; 2012
    [Google Scholar]
  132. Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm 2014;2014: 162021 [CrossRef]
    [Google Scholar]
  133. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014;156: 84– 96 [CrossRef]
    [Google Scholar]
  134. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012;3: 289– 306 [CrossRef]
    [Google Scholar]
  135. Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012;7: e35240 [CrossRef]
    [Google Scholar]
  136. Inoue D, Tsujimoto G, Kimura I. Regulation of energy homeostasis by GPR41. Front Endocrinol 2014;5: 81 [CrossRef]
    [Google Scholar]
  137. Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA 2004;101: 1045– 1050 [CrossRef]
    [Google Scholar]
  138. Pais R, Gribble FM, Reimann F. Stimulation of incretin secreting cells. Ther Adv Endocrinol Metab 2016;7: 24– 42 [CrossRef]
    [Google Scholar]
  139. Tang C, Ahmed K, Gille A, Lu S, Gröne HJ et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 2015;21: 173– 177 [CrossRef]
    [Google Scholar]
  140. National heart, Lung, and Blood Institute 2019; Classification of overweight and obesity by BMI, waist circumference, and associated disease risks. https://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmi_dis.htm
  141. Redinger RN. The pathophysiology of obesity and its clinical manifestations. Gastroenterol Hepatol 2007;3: 856– 863
    [Google Scholar]
  142. Parks BW, Nam E, Org E, Kostem E, Norheim F et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 2013;17: 141– 152 [CrossRef]
    [Google Scholar]
  143. Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded?. Diabetes Care 2010;33: 2277– 2284 [CrossRef]
    [Google Scholar]
  144. Ferraris RP, Vinnakota RR. Intestinal nutrient transport in genetically obese mice. Am J Clin Nutr 1995;62: 540– 546 [CrossRef]
    [Google Scholar]
  145. Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol 2015;15: 100 [CrossRef]
    [Google Scholar]
  146. Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature 2012;486: 207– 214 [CrossRef]
    [Google Scholar]
  147. Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. A taxonomic signature of obesity in the microbiome? getting to the guts of the matter. PLoS One 2014;9: e84689 [CrossRef]
    [Google Scholar]
  148. Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 2014;588: 4223– 4233 [CrossRef]
    [Google Scholar]
  149. Blaut M, Klaus S. Intestinal Microbiota and Obesity In Joost HG. editor Appetite Control. Handbook of Experimental Pharmacology209 Heidelberg: Springer; 2012
    [Google Scholar]
  150. DiBaise JK, Frank DN, Mathur R. Impact of the gut microbiota on the development of obesity: current concepts. Am J Gastroenterol Suppl 2012;1: 22– 27 [CrossRef]
    [Google Scholar]
  151. Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med 2013;34: 39– 58 [CrossRef]
    [Google Scholar]
  152. Sweeney TE, Morton JM. The human gut microbiome. JAMA Surg 2013;148: 563– 569 [CrossRef]
    [Google Scholar]
  153. Barlow GM, Yu A, Mathur R. Role of the gut microbiome in obesity and diabetes mellitus. Nutr Clin Pract 2015;30: 787– 797 [CrossRef]
    [Google Scholar]
  154. Villanueva-Millán MJ, Pérez-Matute P, Oteo JA. Gut microbiota: a key player in health and disease. A review focused on obesity. J Physiol Biochem 2015;71: 509– 525 [CrossRef]
    [Google Scholar]
  155. Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol 2017;17: 120 [CrossRef]
    [Google Scholar]
  156. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. "Marked alterations in the distal gut microbiome linked to diet-induced obesity.". Cell Host Microbe 2008;3: 213– 223
    [Google Scholar]
  157. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013;341: 1241214 [CrossRef]
    [Google Scholar]
  158. Ravussin Y, Koren O, Spor A, LeDuc C, Gutman R et al. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity 2012;20: 738– 747 [CrossRef]
    [Google Scholar]
  159. Homsi ME, Ducroc R, Claustre J, Jourdan G, Gertler A et al. Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting PKC, PI3K, and MAPK pathways. Am J Physiol Gastrointest Liver Physiol 2007;293: G365– G373 [CrossRef]
    [Google Scholar]
  160. Plaisancie P, Ducroc R, Homsi ME, Tsocas A, Guilmeau S et al. Luminal leptin activates mucin-secreting goblet cells in the large bowel. Am J Physiol Gastrointest Liver Physiol 2006;290: G805– G812 [CrossRef]
    [Google Scholar]
  161. Mar Rodríguez M, Pérez D, Javier Chaves F, Esteve E, Marin-Garcia P et al. Obesity changes the human gut mycobiome. Sci Rep 2015;5: 14600 [CrossRef]
    [Google Scholar]
  162. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500: 541– 546 [CrossRef]
    [Google Scholar]
  163. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 2005;43: 3380– 3389 [CrossRef]
    [Google Scholar]
  164. Leschelle X, Goubern M, Andriamihaja M, Blottière HM, Couplan E et al. Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide. Biochimica et Biophysica Acta (BBA) - General Subjects 2005;1725: 201– 212 [CrossRef]
    [Google Scholar]
  165. de la Cuesta-Zuluaga J, Mueller N, Álvarez-Quintero R, Velásquez-Mejía E, Sierra J et al. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients 2019;11: E51 [CrossRef]
    [Google Scholar]
  166. Yang J, Summanen PH, Henning SM, Hsu M, Lam H et al. Xylooligosaccharide supplementation alters gut bacteria in both healthy and prediabetic adults: a pilot study. Front Physiol 2015;6: [CrossRef]
    [Google Scholar]
  167. Duca FA, Sakar Y, Lepage P, Devime F, Langelier B et al. Replication of obesity and associated signaling pathways through transfer of microbiota from Obese-Prone rats. Diabetes 2014;63: 1624– 1636 [CrossRef]
    [Google Scholar]
  168. Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J 2006;25: 1419– 1425 [CrossRef]
    [Google Scholar]
  169. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006;439: 484– 489 [CrossRef]
    [Google Scholar]
  170. Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 2005;3: 431– 438 [CrossRef]
    [Google Scholar]
  171. Smet ID, Boever PD, Verstraete W. Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. Br J Nutr 1998;79: 185– 194 [CrossRef]
    [Google Scholar]
  172. Xiao JZ, Kondo S, Takahashi N, Miyaji K, Oshida K et al. Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J Dairy Sci 2003;86: 2452– 2461 [CrossRef]
    [Google Scholar]
  173. Martin François‐Pierre J, Dumas Marc‐Emmanuel, Wang Y, Legido‐Quigley C, Yap IKS et al. A top‐down systems biology view of microbiome‐mammalian metabolic interactions in a mouse model. Mol Syst Biol 2007;3: 112 [CrossRef]
    [Google Scholar]
  174. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 2007;104: 979– 984 [CrossRef]
    [Google Scholar]
  175. Carling D. The AMP-activated protein kinase cascade – a unifying system for energy control. Trends Biochem Sci 2004;29: 18– 24 [CrossRef]
    [Google Scholar]
  176. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000;20: 1868– 1876 [CrossRef]
    [Google Scholar]
  177. Preiss-Landl K, Zimmermann R, Hämmerle G, Zechner R. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol 2002;13: 471– 481 [CrossRef]
    [Google Scholar]
  178. Fu J, Astarita G, Gaetani S, Kim J, Cravatt BF et al. Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine. J Biol Chem 2007;282: 1518– 1528 [CrossRef]
    [Google Scholar]
  179. Gillum MP, Zhang D, Zhang X-M, Erion DM, Jamison RA et al. N-Acylphosphatidylethanolamine, a Gut- derived circulating factor induced by fat ingestion, inhibits food intake. Cell 2008;135: 813– 824 [CrossRef]
    [Google Scholar]
  180. Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 2014;124: 3391– 3406 [CrossRef]
    [Google Scholar]
  181. Diep TA, Madsen AN, Krogh-Hansen S, Al-Shahwani M, Al-Sabagh L et al. Dietary non-esterified oleic acid decreases the jejunal levels of anorectic N-acylethanolamines. PLoS One 2014;9: e100365 [CrossRef]
    [Google Scholar]
  182. Diep TA, Madsen AN, Holst B, Kristiansen MM, Wellner N et al. Dietary fat decreases intestinal levels of the anorectic lipids through a fat sensor. The FASEB Journal 2011;25: 765– 774 [CrossRef]
    [Google Scholar]
  183. Dosoky NS, Guo L, Chen Z, Feigley AV, Davies SS. Dietary Fatty Acids Control the Species of N -Acyl-Phosphatidylethanolamines Synthesized by Therapeutically Modified Bacteria in the Intestinal Tract. ACS Infect. Dis. 2018;4: 3– 13 [CrossRef]
    [Google Scholar]
  184. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008;6: e280 [CrossRef]
    [Google Scholar]
  185. Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 2009;77: 2367– 2375 [CrossRef]
    [Google Scholar]
  186. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014;158: 705– 721 [CrossRef]
    [Google Scholar]
  187. Cromwell GL. Why and how antibiotics are used in swine production. Anim Biotechnol 2002;13: 7– 27 [CrossRef]
    [Google Scholar]
  188. Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 2014;311: 5
    [Google Scholar]
  189. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest 2000;106: 473– 481 [CrossRef]
    [Google Scholar]
  190. Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 2013;98: 111– 120 [CrossRef]
    [Google Scholar]
  191. Scanlan PD, Shanahan F, Clune Y, Collins JK, O'Sullivan GC et al. Culture-Independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 2008;10: 789– 798 [CrossRef]
    [Google Scholar]
  192. Marchesi JR, Dutilh BE, Hall N, Peters WHM, Roelofs R et al. Towards the human colorectal cancer microbiome. PLoS One 2011;6: e20447 [CrossRef]
    [Google Scholar]
  193. Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao L et al. Multi-Cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome 2018;6: 70 [CrossRef]
    [Google Scholar]
  194. Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM et al. The gut microbiota and host health: a new clinical frontier. Gut 2016;65: 330– 339 [CrossRef]
    [Google Scholar]
  195. Coleman OI, Lobner EM, Bierwirth S, Sorbie A, Waldschmitt N et al. Activated ATF6 induces intestinal dysbiosis and innate immune response to promote colorectal tumorigenesis. Gastroenterology 2018;155: 1539– 1552 [CrossRef]
    [Google Scholar]
  196. Qin J, Li Y, Cai Z, Li S, Zhu J et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490: 55– 60 [CrossRef]
    [Google Scholar]
  197. Wen L, Duffy A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J Nutr 2017;147: 1468S– 1475 [CrossRef]
    [Google Scholar]
  198. Fonseca VA. Defining and characterizing the progression of type 2 diabetes. Diabetes Care 2009;32: S151– S156 [CrossRef]
    [Google Scholar]
  199. Roglic G, Varghese C, Thamarangsi T. Diabetes in south-east Asia: burden, gaps, challenges and ways forward. WHO South-East Asia J Public Health 2016;5: 1– 4 [CrossRef]
    [Google Scholar]
  200. Agarwal AK, Ahirwar G, Marskole P, Bhagwat AK. A community based study to assess the validity of Indian diabetic risk score, among urban population of North central India. IJCMPH 2016;4: 2101– 2106
    [Google Scholar]
  201. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes 2008;32: 1431– 1437 [CrossRef]
    [Google Scholar]
  202. Cipolletta D, Kolodin D, Benoist C, Mathis D. Tissular Tregs: a unique population of adipose-tissue-resident Foxp3+CD4+ T cells that impacts organismal metabolism. Semin Immunol 2011;23: 431– 437 [CrossRef]
    [Google Scholar]
  203. Ding S, Lund PK. Role of intestinal inflammation as an early event in obesity and insulin resistance. Curr Opin Clin Nutr Metab Care 2011;14: 328– 333 [CrossRef]
    [Google Scholar]
  204. Horton F, Wright J, Smith L, Hinton PJ, Robertson MD. Increased intestinal permeability to oral chromium (51 Cr) -EDTA in human type 2 diabetes. Diabet Med 2014;31: 559– 563 [CrossRef]
    [Google Scholar]
  205. Xiao S, Fei N, Pang X, Shen J, Wang L et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol 2014;87: 357– 367 [CrossRef]
    [Google Scholar]
  206. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498: 99– 103 [CrossRef]
    [Google Scholar]
  207. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012;143: 913– 916 [CrossRef]
    [Google Scholar]
  208. Hsieh FC, Lee CL, Chai CY, Chen WT, Lu YC et al. Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr Metab 2013;10: 35 [CrossRef]
    [Google Scholar]
  209. Reunanen J, Kainulainen V, Huuskonen L, Ottman N, Belzer C et al. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl Environ Microbiol 2015;81: 3655– 3662 [CrossRef]
    [Google Scholar]
  210. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C et al. Cross-Talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 2013;110: 9066– 9071 [CrossRef]
    [Google Scholar]
  211. Belzer C, de Vos WM. Microbes inside--from diversity to function: the case of Akkermansia. ISME J 2012;6: 1449– 1458 [CrossRef]
    [Google Scholar]
  212. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004;54: 1469– 1476 [CrossRef]
    [Google Scholar]
  213. Sonoyama K, Fujiwara R, Takemura N, Ogasawara T, Watanabe J et al. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Appl Environ Microbiol 2009;75: 6451– 6456 [CrossRef]
    [Google Scholar]
  214. Ring C, Klopfleisch R, Dahlke K, Basic M, Bleich A et al. Akkermansia muciniphila strain ATCC BAA-835 does not promote short-term intestinal inflammation in gnotobiotic interleukin-10-deficient mice. Gut Microbes 2018;25: 1– 16
    [Google Scholar]
  215. Minamii T, Nogami M, Ogawa W. Mechanisms of metformin action: in and out of the gut. J Diabetes Investig 2018;9: 701– 703 [CrossRef]
    [Google Scholar]
  216. Shin N-R, Lee J-C, Lee H-Y, Kim M-S, Whon TW et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014;63: 727– 735 [CrossRef]
    [Google Scholar]
  217. Hur KY, Lee M-S. New mechanisms of metformin action: focusing on mitochondria and the gut. J Diabetes Investig 2015;6: 600– 609 [CrossRef]
    [Google Scholar]
  218. Lee H, Ko G. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol 2014;80: 5935– 5943 [CrossRef]
    [Google Scholar]
  219. Rodriguez J, Hiel S, Delzenne NM. Metformin: old friend new ways of action-implication of the gut microbiome?. Curr Opin Clin Nutr Metab Care 2018;21: 294– 301 [CrossRef]
    [Google Scholar]
  220. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017;23: 850– 858 [CrossRef]
    [Google Scholar]
  221. Zhang L, Qin Q, Liu M, Zhang X, He F et al. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats. Pathog Dis 2018;76: [CrossRef]
    [Google Scholar]
  222. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015;528: 262– 266 [CrossRef]
    [Google Scholar]
  223. Plovier H, Everard A, Druart C, Depommier C, Van Hul M et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 2017;23: 107– 113 [CrossRef]
    [Google Scholar]
  224. Pascale A, Marchesi N, Govoni S, Coppola A, Gazzaruso C. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases. Curr Opin Pharmacol 2019;49: 1– 5 [CrossRef]
    [Google Scholar]
  225. Akerblom HK, Knip M. Putative environmental factors in type 1 diabetes. Diabetes Metab Rev 1998;14: 31– 68 [CrossRef]
    [Google Scholar]
  226. Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 2011;5: 82– 91 [CrossRef]
    [Google Scholar]
  227. Brown K, Godovannyi A, Ma C, Zhang Y, Ahmadi-Vand Z et al. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice. ISME J 2016;10: 321– 332 [CrossRef]
    [Google Scholar]
  228. Thuny F, Richet H, Casalta J-P, Angelakis E, Habib G et al. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One 2010;5: e9074 [CrossRef]
    [Google Scholar]
  229. Vrieze A, Out C, Fuentes S, Jonker L, Reuling I et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 2014;60: 824– 831 [CrossRef]
    [Google Scholar]
  230. Yamada Y, Miyawaki K, Tsukiyama K, Harada N, Yamada C et al. Pancreatic and extrapancreatic effects of gastric inhibitory polypeptide. Diabetes 2006;55: S86– S91 [CrossRef]
    [Google Scholar]
  231. Hwang I, Park YJ, Kim Y-R, Kim YN, Ka S et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. The FASEB Journal 2015;29: 2397– 2411 [CrossRef]
    [Google Scholar]
  232. Miele L, Giorgio V, Alberelli MA, De Candia E, Gasbarrini A et al. Impact of gut microbiota on obesity, diabetes, and cardiovascular disease risk. Curr Cardiol Rep 2015;17: 120 [CrossRef]
    [Google Scholar]
  233. Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go?. J Nutr Biochem 2019;63: 101– 108 [CrossRef]
    [Google Scholar]
  234. Koren O, Spor A, Felin J, Fåk F, Stombaugh J et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A 2011;108: 4592– 4598 [CrossRef]
    [Google Scholar]
  235. Conti S, Santos SSFdos, Koga-Ito CY, Jorge AOC. Enterobacteriaceae and Pseudomonadaceae on the dorsum of the human tongue. J. Appl. Oral Sci. 2009;17: 375– 380 [CrossRef]
    [Google Scholar]
  236. Campbell LA, Kuo CC. Chlamydia pneumoniae — an infectious risk factor for atherosclerosis?. Nat Rev Microbiol 2004;2: 23– 32 [CrossRef]
    [Google Scholar]
  237. Smieja M, Mahony J, Petrich A, Boman J, Chernesky M. Association of circulating Chlamydia pneumoniaeDNA with cardiovascular disease: a systematic review. BMC Infect Dis 2002;2: 21 [CrossRef]
    [Google Scholar]
  238. Peng J, Xiao X, Hu M, Zhang X. Interaction between gut microbiome and cardiovascular disease. Life Sci 2018;214: 153– 157 [CrossRef]
    [Google Scholar]
  239. Stock J. Gut microbiota: an environmental risk factor for cardiovascular disease. Atherosclerosis 2013;229: 440– 442 [CrossRef]
    [Google Scholar]
  240. Jonsson AL, Bäckhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol 2017;14: 79– 87 [CrossRef]
    [Google Scholar]
  241. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011;472: 57– 63 [CrossRef]
    [Google Scholar]
  242. Canyelles M, Tondo M, Cedó L, Farràs M, Escolà-Gil JC et al. Trimethylamine N-oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. Int J Mol Sci 2018;19: 3228 [CrossRef]
    [Google Scholar]
  243. Gregory JC, Buffa JA, Org E, Wang Z, Levison BS et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J. Biol. Chem. 2015;290: 5647– 5660 [CrossRef]
    [Google Scholar]
  244. Lindskog Jonsson A, Caesar R, Akrami R, Reinhardt C, Fåk Hållenius F et al. Impact of Gut Microbiota and Diet on the Development of Atherosclerosis in Apoe-/- Mice. Arterioscler Thromb Vasc Biol 2018;38: 2318– 2326 [CrossRef]
    [Google Scholar]
  245. Cho CE, Caudill MA. Trimethylamine-N-Oxide: Friend, foe, or simply caught in the cross-fire?. Trends Endocrinol Metab 2017;28: 121– 130 [CrossRef]
    [Google Scholar]
  246. Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y et al. Trimethylamine-N-Oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 2013;17: 49– 60 [CrossRef]
    [Google Scholar]
  247. Koeth RA, Levison BS, Culley MK, Buffa JA, Wang Z et al. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L -carnitine to TMAO. Cell Metab 2014;20: 799– 812 [CrossRef]
    [Google Scholar]
  248. Tang WHW, Wang Z, Kennedy DJ, Wu Y, Buffa JA et al. Gut Microbiota-dependent trimethylamine N -oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 2015;116: 448– 455 [CrossRef]
    [Google Scholar]
  249. Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013;368: 1575– 1584 [CrossRef]
    [Google Scholar]
  250. Falony G, Vieira-Silva S, Raes J. Microbiology meets big data: the case of gut microbiota–derived trimethylamine. Annu Rev Microbiol 2015;69: 305– 321 [CrossRef]
    [Google Scholar]
  251. Zhu Y, Jameson E, Crosatti M, Schäfer H, Rajakumar K et al. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci USA 2014;111: 4268– 4273 [CrossRef]
    [Google Scholar]
  252. Al-Rubaye H, Perfetti G, Kaski JC. The role of microbiota in cardiovascular risk: focus on trimethylamine oxide. Curr Probl Cardiol 2019;44: 182– 196 [CrossRef]
    [Google Scholar]
  253. Ott SJ, El Mokhtari NE, Musfeldt M, Hellmig S, Freitag S et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 2006;113: 929– 937 [CrossRef]
    [Google Scholar]
  254. Romano KA, Vivas EI, Amador-Noguez D, Rey FE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio 2015;6: e2481– 14 [CrossRef]
    [Google Scholar]
  255. Kelly CR, Khoruts A, Staley C, Sadowsky MJ, Abd M et al. Effect of Fecal Microbiota Transplantation on Recurrence in Multiply Recurrent Clostridium difficile Infection. Ann Intern Med 2016;165: 609– 616 [CrossRef]
    [Google Scholar]
  256. Chan YK, El-Nezami H, Chen Y, Kinnunen K, Kirjavainen PV. Probiotic mixture VSL#3 reduce high fat diet induced vascular inflammation and atherosclerosis in ApoE−/− mice. AMB Express 2016;6: 61 [CrossRef]
    [Google Scholar]
  257. Brugère JF, Borrel G, Gaci N, Tottey W, O'Toole PW et al. Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 2014;5: 5– 10 [CrossRef]
    [Google Scholar]
  258. Neill AR, Grime DW, Dawson RMC. Conversion of choline methyl groups through trimethylamine into methane in the rumen. Biochem. J. 1978;170: 529– 535 [CrossRef]
    [Google Scholar]
  259. Mihajlovski A, Alric M, Brugère J-F. A putative new order of methanogenic archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene. Res Microbiol 2008;159: 516– 521 [CrossRef]
    [Google Scholar]
  260. Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 2012;62: 1902– 1907 [CrossRef]
    [Google Scholar]
  261. Li JV, Ashrafian H, Bueter M, Kinross J, Sands C et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut 2011;60: 1214– 1223 [CrossRef]
    [Google Scholar]
  262. Liou AP, Paziuk M, Luevano J-M, Machineni S, Turnbaugh PJ et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 2013;5: 178ra41 [CrossRef]
    [Google Scholar]
  263. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A et al. Fxr is a molecular target for the effects of vertical sleeve gastrectomy. Nature 2014;509: 183– 188 [CrossRef]
    [Google Scholar]
  264. Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007;357: 741– 752 [CrossRef]
    [Google Scholar]
  265. Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K et al. Bariatric surgery and long-term cardiovascular events. JAMA 2012;307: 56– 65 [CrossRef]
    [Google Scholar]
  266. Werling M, Fändriks L, Björklund P, Maleckas A, Brandberg J et al. Long-term results of a randomized clinical trial comparing Roux-en-$\hbox{Y}$ gastric bypass with vertical banded gastroplasty. Br J Surg 2013;100: 222– 230 [CrossRef]
    [Google Scholar]
  267. Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab 2008;93: s89– s96 [CrossRef]
    [Google Scholar]
  268. Aronne LJ, Nelinson DS, Lillo JL. Obesity as a disease state: a new paradigm for diagnosis and treatment. Clin Cornerstone 2009;9: 9– 29 [CrossRef]
    [Google Scholar]
  269. Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. Defining comorbidity: implications for understanding health and health services. The Annals of Family Medicine 2009;7: 357– 363 [CrossRef]
    [Google Scholar]
  270. Tremaroli V, Karlsson F, Werling M, Ståhlman M, Kovatcheva-Datchary P et al. Roux-En-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab 2015;22: 228– 238 [CrossRef]
    [Google Scholar]
  271. Hughes V. Weight-Loss surgery: a gut-wrenching question. Nature 2014;511: 282– 284 [CrossRef]
    [Google Scholar]
  272. Stefater MA, Wilson-Pérez HE, Chambers AP, Sandoval DA, Seeley RJ. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev 2012;33: 595– 622 [CrossRef]
    [Google Scholar]
  273. Chambers AP, Wilson-Perez HE, McGrath S, Grayson BE, Ryan KK et al. Effect of vertical sleeve gastrectomy on food selection and satiation in rats. Am J Physiol Endocrinol Metab 2012;303: E1076– E1084 [CrossRef]
    [Google Scholar]
  274. Karmali S, Schauer P, Birch D, Sharma AM, Sherman V. Laparoscopic sleeve gastrectomy: an innovative new tool in the battle against the obesity epidemic in Canada. Can J Surg 2010;53: 126– 132
    [Google Scholar]
  275. Peck BCE, Seeley RJ. How does 'metabolic surgery' work its magic? New evidence for gut microbiota. Curr Opin Endocrinol Diabetes Obes 2018;25: 81– 86 [CrossRef]
    [Google Scholar]
  276. Guo Y, Huang Z-P, Liu C-Q, Qi L, Sheng Y et al. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery. Eur J Endocrinol 2018;178: 43– 56 [CrossRef]
    [Google Scholar]
  277. Patrone V, Vajana E, Minuti A, Callegari ML, Federico A et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing Bilio-Intestinal bypass. Front Microbiol 2016;7: 200 [CrossRef]
    [Google Scholar]
  278. Palleja A, Kashani A, Allin KH, Nielsen T, Zhang C et al. Roux-En-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med 2016;8: 67 [CrossRef]
    [Google Scholar]
  279. Basso N, Soricelli E, Castagneto-Gissey L, Casella G, Albanese D et al. Insulin resistance, microbiota, and fat distribution changes by a new model of vertical sleeve gastrectomy in obese rats. Diabetes 2016;65: 2990– 3001 [CrossRef]
    [Google Scholar]
  280. Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. Journal of Clinical Investigation 2006;116: 1102– 1109 [CrossRef]
    [Google Scholar]
  281. Zhang Y, Lee FY, Barrera G, Lee H, Vales C et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 2006;103: 1006– 1011 [CrossRef]
    [Google Scholar]
  282. Albaugh VL, Banan B, Antoun J, Xiong Y, Guo Y et al. Role of bile acids and GLP-1 in mediating the metabolic improvements of bariatric surgery. Gastroenterology 2019;156: 1041– 1051 [CrossRef]
    [Google Scholar]
  283. Kohli R, Setchell KDR, Kirby M, Myronovych A, Ryan KK et al. A surgical model in male obese rats uncovers protective effects of bile acids Post-Bariatric surgery. Endocrinology 2013;154: 2341– 2351 [CrossRef]
    [Google Scholar]
  284. Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 2012;153: 3613– 3619 [CrossRef]
    [Google Scholar]
  285. Breitman I, Isbell JM, Saliba J, Jabbour K, Flynn CR et al. Effects of proximal gut bypass on glucose tolerance and insulin sensitivity in humans. Diabetes Care 2013;36: e57 [CrossRef]
    [Google Scholar]
  286. Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G‐protein bile acid receptor‐1 signaling to improve metabolism. Hepatology 2018;68: 1574– 1588 [CrossRef]
    [Google Scholar]
  287. Agrawal M, Aroniadis OC, Brandt LJ, Kelly C, Freeman S et al. The long-term efficacy and safety of fecal microbiota transplant for recurrent, severe, and complicated Clostridium difficile infection in 146 elderly individuals. J Clin Gastroenterol 2016;50: 403– 407 [CrossRef]
    [Google Scholar]
  288. Jayasinghe TN, Chiavaroli V, Holland DJ, Cutfield WS, O'Sullivan JM. The new era of treatment for obesity and metabolic disorders: evidence and expectations for gut microbiome transplantation. Front Cell Infect Microbiol 2016;6: 15 [CrossRef]
    [Google Scholar]
  289. Aroniadis OC, Brandt LJ. Intestinal microbiota and the efficacy of fecal microbiota transplantation in gastrointestinal disease. Gastroenterol Hepatol 2014; 10: 230– 237
    [Google Scholar]
  290. Smits LP, Bouter KEC, de Vos WM, Borody TJ, Nieuwdorp M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 2013;145: 946– 953 [CrossRef]
    [Google Scholar]
  291. Moore T, Rodriguez A, Bakken JS. Fecal microbiota transplantation: a practical update for the infectious disease specialist. Clinical Infectious Diseases 2014;58: 541– 545 [CrossRef]
    [Google Scholar]
  292. Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 2015;149: 223– 237 [CrossRef]
    [Google Scholar]
  293. Zhang F, Luo W, Shi Y, Fan Z, Ji G. Should we standardize the 1,700-year-old fecal microbiota transplantation?. Am J Gastroenterol 2012;107: 1755– 1756 [CrossRef]
    [Google Scholar]
  294. Eiseman B, Silen W, Bascom GS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 1958;44: 854– 859
    [Google Scholar]
  295. Bidu C, Escoula Q, Bellenger S, Spor A, Galan M et al. The transplantation of ω3 PUFA–Altered gut microbiota of fat-1 mice to wild-type littermates prevents obesity and associated metabolic disorders. Diabetes 2018;67: 1512– 1523 [CrossRef]
    [Google Scholar]
  296. Lee HL, Shen H, Hwang IY, Ling H, Yew WS et al. Targeted approaches for in situ gut microbiome manipulation. Genes 2018;9: E351 [CrossRef]
    [Google Scholar]
  297. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol 2016;7: 979 [CrossRef]
    [Google Scholar]
  298. Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PGB et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013;62: 1112– 1121 [CrossRef]
    [Google Scholar]
  299. Wu X, Ma C, Han L, Nawaz M, Gao F et al. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 2010;61: 69– 78 [CrossRef]
    [Google Scholar]
  300. Tamanai-Shacoori Z, Smida I, Bousarghin L, Loreal O, Meuric V et al. Roseburia spp.: a marker of health?. Future Microbiol 2017;12: 157– 170 [CrossRef]
    [Google Scholar]
  301. Barczynska R, Bandurska K, Slizewska K, Litwin M, Szalecki M et al. Intestinal microbiota, obesity and prebiotics. Pol J Microbiol 2015;64: 93– 100
    [Google Scholar]
  302. Matsumoto M, Inoue R, Tsukahara T, Ushida K, Chiji H et al. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem 2008;72: 572– 576 [CrossRef]
    [Google Scholar]
  303. Queipo-Ortuño MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM et al. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One 2013;8: e65465 [CrossRef]
    [Google Scholar]
  304. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One 2014;9: e92193 [CrossRef]
    [Google Scholar]
  305. Kang SS, Jeraldo PR, Kurti A, Miller ME, Cook MD et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener 2014;9: 36 [CrossRef]
    [Google Scholar]
  306. Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J et al. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab 2015;40: 749– 752 [CrossRef]
    [Google Scholar]
  307. Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD. High-Intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab 2016;310: E982– E993 [CrossRef]
    [Google Scholar]
  308. Mika A, Van Treuren W, González A, Herrera JJ, Knight R et al. Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats. PLoS One 2015;10: e0125889 [CrossRef]
    [Google Scholar]
  309. Campbell SC, Wisniewski PJ, Noji M, McGuinness LR, Häggblom MM et al. The effect of diet and exercise on intestinal integrity and microbial diversity in mice. PLoS One 2016;11: e0150502 [CrossRef]
    [Google Scholar]
  310. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 2011;6: e25792 [CrossRef]
    [Google Scholar]
  311. Dabard J, Bridonneau C, Phillipe C, Anglade P, Molle D et al. Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces. Appl Environ Microbiol 2001;67: 4111– 4118 [CrossRef]
    [Google Scholar]
  312. Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014;63: 1913– 1920 [CrossRef]
    [Google Scholar]
  313. Murtaza N, Burke L, Vlahovich N, Charlesson B, O’ Neill H et al. The effects of dietary pattern during intensified training on stool microbiota of elite race walkers. Nutrients 2019;11: pii:E261 [CrossRef]
    [Google Scholar]
  314. Bressa C, Bailén-Andrino M, Pérez-Santiago J, González-Soltero R, Pérez M et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One 2017;12: e0171352 [CrossRef]
    [Google Scholar]
  315. Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD et al. Exercise alters gut microbiota composition and function in lean and obese humans. Medicine & Science in Sports & Exercise 2018;50: 747– 757 [CrossRef]
    [Google Scholar]
  316. Munukka E, Ahtiainen JP, Puigbó P, Jalkanen S, Pahkala K et al. Six-Week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in Over-weight women. Front Microbiol 2018;9: 2323 [CrossRef]
    [Google Scholar]
  317. Cronin O, Barton W, Skuse P, Penney NC, Garcia-Perez I et al. A prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults. mSystems 2018;3: pii: e00044-18 [CrossRef]
    [Google Scholar]
  318. Peng L, Li Z-R, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 2009;139: 1619– 1625 [CrossRef]
    [Google Scholar]
  319. Packer N, Hoffman-Goetz L. Exercise training reduces inflammatory mediators in the intestinal tract of healthy older adult mice. Can. J. Aging 2012;31: 161– 171 [CrossRef]
    [Google Scholar]
  320. Hoffman-Goetz L, Pervaiz N, Guan J. Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-α in intestinal lymphocytes. Brain Behav Immun 2009;23: 498– 506 [CrossRef]
    [Google Scholar]
  321. Hoffman-Goetz L, Pervaiz N, Packer N, Guan J. Freewheel training decreases pro- and increases anti-inflammatory cytokine expression in mouse intestinal lymphocytes. Brain Behav Immun 2010;24: 1105– 1115 [CrossRef]
    [Google Scholar]
  322. Ismail AS, Severson KM, Vaishnava S, Behrendt CL, Yu X et al. Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci USA 2011;108: 8743– 8748 [CrossRef]
    [Google Scholar]
  323. Rowell LB, Brengelmann GL, Blackmon JR, Twiss RD, Kusumi F. Splanchnic blood flow and metabolism in heat-stressed man. J Appl Physiol 1968;24: 475– 484 [CrossRef]
    [Google Scholar]
  324. van Wijck K, Lenaerts K, van Loon LJC, Peters WHM, Buurman WA et al. Exercise-Induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One 2011;6: e222366 [CrossRef]
    [Google Scholar]
  325. Otte JA, Oostveen E, Geelkerken RH, Groeneveld ABJ, Kolkman JJ. Exercise induces gastric ischemia in healthy volunteers: a tonometry study. J Appl Physiol 2001;91: 866– 871 [CrossRef]
    [Google Scholar]
  326. Carmody RN, Gerber GK, Luevano JM, Gatti DM, Somes L et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 2015;17: 72– 84 [CrossRef]
    [Google Scholar]
  327. Ma W, Mao Q, Xia W, Dong G, Yu C et al. Gut microbiota shapes the efficiency of cancer therapy. Front Microbiol 2019;10: 1050 [CrossRef]
    [Google Scholar]
  328. Surana NK, Kasper DL. Erratum: moving beyond microbiome-wide associations to causal microbe identification. Nature 2018;554: 392– 247 [CrossRef]
    [Google Scholar]
  329. McCoy KD, Geuking MB, Ronchi F. Gut microbiome standardization in control and experimental mice. Curr Protoc Immunol 2017;117: 1– 13 [CrossRef]
    [Google Scholar]
  330. Atıcı S, Soysal A, Karadeniz Cerit K, Yılmaz Şerife, Aksu B et al. Catheter-Related Saccharomyces cerevisiae fungemia following Saccharomyces boulardii probiotic treatment: in a child in intensive care unit and review of the literature. Med Mycol Case Rep 2017;15: 33– 35 [CrossRef]
    [Google Scholar]
  331. d'Hennezel E, Abubucker S, Murphy LO, Cullen TW. Total lipopolysaccharide from the human gut microbiome silences Toll-like receptor signaling. mSystems 2017;2: e00046– 17 [CrossRef]
    [Google Scholar]
  332. Blaut M, Clavel T. Metabolic diversity of the intestinal microbiota: implications for health and disease. J Nutr 2007;137: 751S– 755 [CrossRef]
    [Google Scholar]
  333. Valentini M, Piermattei A, Di Sante G, Migliara G, Delogu G et al. Immunomodulation by gut microbiota: role of Toll-like receptor expressed by T cells. J Immunol Res 2014;2014: 1– 8 [CrossRef]
    [Google Scholar]
  334. Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol 2008;9: 769– 776 [CrossRef]
    [Google Scholar]
  335. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med 2017;15: 73 [CrossRef]
    [Google Scholar]
  336. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009;9: 313– 323 [CrossRef]
    [Google Scholar]
  337. Griffin C, Eter L, Lanzetta N, Abrishami S, Varghese M et al. TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c+ adipose tissue macrophage production in obese mice. J Biol Chem 2018;293: 8775– 8786 [CrossRef]
    [Google Scholar]
  338. Tun X, Yasukawa K, Yamada K-ichi, Yamada K. Involvement of nitric oxide with activation of Toll-like receptor 4 signaling in mice with dextran sodium sulfate-induced colitis. Free Radic Biol Med 2014;74: 108– 117 [CrossRef]
    [Google Scholar]
  339. Ali M, El Chaar M, Ghiassi S, Rogers AM. American society for metabolic and bariatric surgery updated position statement on sleeve gastrectomy as a bariatric procedure. Surg Obes Relat Dis 2017;13: 1652– 1657 [CrossRef]
    [Google Scholar]
  340. Du J, Tian J, Ding L, Trac C, Xia B et al. Vertical sleeve gastrectomy reverses diet-induced gene-regulatory changes impacting lipid metabolism. Sci Rep 2017;7: 5274 [CrossRef]
    [Google Scholar]
  341. Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 2012;366: 1567– 1576 [CrossRef]
    [Google Scholar]
  342. Hsu LK, Betancourt S, Sullivan SP. Eating disturbances before and after vertical banded gastroplasty: a pilot study. Int J Eat Disord 1996;19: 23– 34 [CrossRef]
    [Google Scholar]
  343. Mistiaen W, Vaneerdeweg W, Blockx P, Van Hee R, Hubens G et al. Gastric emptying rate measurement after vertical banded gastroplasty. Obes Surg 2000;10: 245– 249 [CrossRef]
    [Google Scholar]
  344. Patti M-E, Houten SM, Bianco AC, Bernier R, Larsen PR et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity 2009;17: 1671– 1677 [CrossRef]
    [Google Scholar]
  345. Karcz WK, Krawczykowski D, Kuesters S, Marjanovic G, Kulemann B et al. Influence of sleeve gastrectomy on NASH and type 2 diabetes mellitus. J Obes 2011;2011: 765473 7 [CrossRef]
    [Google Scholar]
  346. Myronovych A, Kirby M, Seeley RJ, Kohli R. 50 sleeve gastrectomy in obese mice results in elevated serum bile acids and reduced hepatic steatosis that correlate with weight loss post surgery. Gastroenterology 2012;142: S13 [CrossRef]
    [Google Scholar]
  347. Schauer PR, Ikramuddin S, Gourash W, Ramanathan R, Luketich J. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann Surg 2000;232: 515– 529 [CrossRef]
    [Google Scholar]
  348. Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W et al. "Effect of laparoscopic roux-en-Y gastric bypass on type 2 diabetes mellitus.". Ann Surg 2003;238: 467– 485
    [Google Scholar]
  349. Higa KD, Boone KB, Ho T. Complications of the laparoscopic Roux-en-Y gastric bypass: 1,040 patients--what have we learned?. Obes Surg 2000;10: 509– 513 [CrossRef]
    [Google Scholar]
  350. DeMaria EJ, Sugerman HJ, Kellum JM, Meador JG, Wolfe LG. Results of 281 consecutive total laparoscopic Roux-en-Y gastric bypasses to treat morbid obesity. Ann Surg 2002;235: 640– 647 [CrossRef]
    [Google Scholar]
  351. Nguyen NT, Ho HS, Palmer LS, Wolfe BM. A comparison study of laparoscopic versus open gastric bypass for morbid obesity. J Am Coll Surg 2000;191: 149– 157 [CrossRef]
    [Google Scholar]
  352. Wittgrove AC, Clark GW. Laparoscopic gastric bypass, Roux-en-Y- 500 patients: technique and results, with 3-60 month follow-up. Obes Surg 2000;10: 233– 239 [CrossRef]
    [Google Scholar]
  353. Kikuchi R, Irie J, Yamada-Goto N, Kikkawa E, Seki Y et al. The impact of laparoscopic sleeve gastrectomy with duodenojejunal bypass on intestinal microbiota differs from that of laparoscopic sleeve gastrectomy in Japanese patients with obesity. Clin Drug Investig 2018;38: 545– 552 [CrossRef]
    [Google Scholar]
  354. Miller K, Hell E. Laparoscopic surgical concepts of morbid obesity. Langenbecks Arch Surg 2003;388: 375– 384 [CrossRef]
    [Google Scholar]
  355. Li JF, Lai DD, Ni B, Sun KX. Comparison of laparoscopic Roux-en-Y gastric bypass with laparoscopic sleeve gastrectomy for morbid obesity or type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Can J Surg 2013;56: E158– 164 [CrossRef]
    [Google Scholar]
  356. Suter M, Donadini A, Romy S, Demartines N, Giusti V. Laparoscopic Roux-en-Y gastric bypass: significant long-term weight loss, improvement of obesity-related comorbidities and quality of life. Ann Surg 2011;254: 267– 273 [CrossRef]
    [Google Scholar]
  357. le Roux CW, Bloom SR. Why do patients lose weight after Roux-en-Y gastric bypass?. The Journal of Clinical Endocrinology & Metabolism 2005;90: 591– 592 [CrossRef]
    [Google Scholar]
  358. Miras AD, le Roux CW. Mechanisms underlying weight loss after bariatric surgery. Nat Rev Gastroenterol Hepatol 2013;10: 575– 584 [CrossRef]
    [Google Scholar]
  359. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 2009;106: 2365– 2370 [CrossRef]
    [Google Scholar]
  360. Furet J-P, Kong L-C, Tap J, Poitou C, Basdevant A et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 2010;59: 3049– 3057 [CrossRef]
    [Google Scholar]
  361. Anderson B, Gill RS, de Gara CJ, Karmali S, Gagner M. Biliopancreatic diversion: the effectiveness of duodenal switch and its limitations. Gastroenterol Res Pract 2013;2013: 974762 8 [CrossRef]
    [Google Scholar]
  362. Scopinaro N, Gianetta E, Civalleri D, Bonalumi U, Bachi V. Bilio-pancreatic bypass for obesity: II. initial experience in man. Br J Surg 1979;66: 618– 620 [CrossRef]
    [Google Scholar]
  363. Eriksson F. Biliointestinal bypass. Int J Obes 1981;5: 437– 447
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000853
Loading
/content/journal/micro/10.1099/mic.0.000853
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error