1887
Preview this article:
Zoom in
Zoomout

Microbial Musings – February 2020, Page 1 of 1

| /docserver/preview/fulltext/micro/166/2/93_micro000901-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000901
2020-02-28
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/2/93.html?itemId=/content/journal/micro/10.1099/mic.0.000901&mimeType=html&fmt=ahah

References

  1. Selber-Hnatiw S, Sultana T, Tse W, Abdollahi N, Abdullah S et al. Metabolic networks of the human gut microbiota. Microbiology 2019; 17:mic000853 [CrossRef]
    [Google Scholar]
  2. Selber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H et al. Human gut microbiota: toward an ecology of disease. Front Microbiol 2017; 8:1265 [CrossRef]
    [Google Scholar]
  3. Bordbar A, Monk JM, King ZA, Palsson BO. Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 2014; 15:107–120 [CrossRef]
    [Google Scholar]
  4. Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 2003; 4:R54 [CrossRef]
    [Google Scholar]
  5. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007; 3:121 [CrossRef]
    [Google Scholar]
  6. Orth JD, Conrad TM, Na J, Lerman JA, Nam H et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism--2011. Mol Syst Biol 2011; 7:535 [CrossRef]
    [Google Scholar]
  7. Thomas GH, Zucker J, Macdonald SJ, Sorokin A, Goryanin I et al. A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola. BMC Syst Biol 2009; 3:24 [CrossRef]
    [Google Scholar]
  8. Hall RJ, Flanagan LA, Bottery MJ, Springthorpe V, Thorpe S et al. A tale of three species: Adaptation of sodalis glossinidius to tsetse biology, Wigglesworthia metabolism, and host diet. mBio 2019; 10:e02106-18 02 01 2019 [CrossRef]
    [Google Scholar]
  9. Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab Eng 2019; 56:1–16 [CrossRef]
    [Google Scholar]
  10. Du B, Olson CA, Sastry AV, Fang X, Phaneuf PV et al. Adaptive laboratory evolution of Escherichia coli under acid stress. Microbiology 2019mic000867 [CrossRef]
    [Google Scholar]
  11. Harden MM, He A, Creamer K, Clark MW, Hamdallah I et al. Acid-adapted strains of Escherichia coli K-12 obtained by experimental evolution. Appl Environ Microbiol 2015; 81:1932–1941 [CrossRef]
    [Google Scholar]
  12. Martínez-García E, Lorenzo de V. Pseudomonas putida in the quest of programmable chemistry. Curr Opin Biotechnol 2019; 59:111–121 [CrossRef]
    [Google Scholar]
  13. Pobre V, Graça-Lopes G, Saramago M, Ankenbauer A, Takors R et al. Prediction of novel non-coding RNAs relevant for the growth of Pseudomonas putida in a bioreactor. Microbiology 2019; 47:micro000875. [CrossRef]
    [Google Scholar]
  14. Bojanovič K, D'Arrigo I, Long KS. Global transcriptional responses to osmotic, oxidative, and imipenem stress conditions in Pseudomonas putida . Appl Environ Microbiol 2017; 83: 01 04 2017 [CrossRef]
    [Google Scholar]
  15. Thomas GH. Microbial Musings - January 2020. Microbiology 2020; 166:1–3 [CrossRef]
    [Google Scholar]
  16. Ramos AF, Woods DF, Shanahan R, Cano R, McGlacken GP et al. A structure-function analysis of interspecies antagonism by the 2-heptyl-4-alkyl-quinolone signal molecule from Pseudomonas aeruginosa . Microbiology 2019micro000876 [CrossRef]
    [Google Scholar]
  17. Basler M, Ho BT, Mekalanos JJ. Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 2013; 152:884–894 [CrossRef]
    [Google Scholar]
  18. McCully AL, Onyeziri MC, LaSarre B, Gliessman JR, McKinlay JB. Reductive tricarboxylic acid cycle enzymes and reductive amino acid synthesis pathways contribute to electron balance in a Rhodospirillum rubrum Calvin-cycle mutant. Microbiology 2019; 180:micro000877 [CrossRef]
    [Google Scholar]
  19. Adhikari N, Kuburich NA, Hadwiger JA. Mitogen-activated protein kinase regulation of the phosphodiesterase RegA in early Dictyostelium development. Microbiology 2019micro000868 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000901
Loading

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error