1887

Abstract

The ability of to tolerate acid stress is important for its survival and colonization in the human digestive tract. Here, we performed adaptive laboratory evolution of the laboratory strain K-12 MG1655 at pH 5.5 in glucose minimal medium. After 800 generations, six independent populations under evolution had reached 18.0 % higher growth rates than their starting strain at pH 5.5, while maintaining comparable growth rates to the starting strain at pH 7. We characterized the evolved strains and found that: (1) whole genome sequencing of isolated clones from each evolved population revealed mutations in appearing in five of six sequenced clones; and (2) gene expression profiles revealed different strategies to mitigate acid stress, which are related to amino acid metabolism and energy production and conversion. Thus, a combination of adaptive laboratory evolution, genome resequencing and expression profiling revealed, on a genome scale, the strategies that uses to mitigate acid stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000867
2019-10-18
2019-11-20
Loading full text...

Full text loading...

References

  1. Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL. Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 1994;176: 1729– 1737 [CrossRef]
    [Google Scholar]
  2. Lin J, Lee IS, Frey J, Slonczewski JL, Foster JW. Comparative analysis of extreme acid survival in salmonella typhimurium, shigella flexneri, and Escherichia coli. J Bacteriol 1995;177: 4097– 4104 [CrossRef]
    [Google Scholar]
  3. Lin J, Smith MP, Chapin KC, Baik HS, Bennett GN et al. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 1996;62: 3094– 3100
    [Google Scholar]
  4. Conner DE, Kotrola JS. Growth and survival of Escherichia coli O157:H7 under acidic conditions. Appl Environ Microbiol 1995;61: 382– 385
    [Google Scholar]
  5. Dlamini BC, Buys EM. Survival and growth of acid adapted Escherichia coli strains in broth at different ph levels. J Food Saf 2009;29: 484– 497 [CrossRef]
    [Google Scholar]
  6. Vivijs B, Aertsen A, Michiels CW. Identification of genes required for growth of Escherichia coli MG1655 at moderately low pH. Front Microbiol 2016;7: 1672 [CrossRef]
    [Google Scholar]
  7. Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988;29: 1035– 1041 [CrossRef]
    [Google Scholar]
  8. Ibekwe VC, Fadda HM, McConnell EL, Khela MK, Evans DF et al. Interplay between intestinal pH, transit time and feed status on the in vivo performance of pH responsive ileo-colonic release systems. Pharm Res 2008;25: 1828– 1835 [CrossRef]
    [Google Scholar]
  9. Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 2009;55: 317 1– 79 [CrossRef]
    [Google Scholar]
  10. Castanié-Cornet MP, Treffandier H, Francez-Charlot A, Gutierrez C, Cam K. The glutamate-dependent acid resistance system in Escherichia coli: essential and dual role of the His-Asp phosphorelay RcsCDB/AF. Microbiology 2007;153: 238– 246 [CrossRef]
    [Google Scholar]
  11. Richard H, Foster JW. Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 2004;186: 6032– 6041 [CrossRef]
    [Google Scholar]
  12. Diez-Gonzalez F, Karaibrahimoglu Y. Comparison of the glutamate-, arginine- and lysine-dependent acid resistance systems in Escherichia coli O157:H7. J Appl Microbiol 2004;96: 1237– 1244 [CrossRef]
    [Google Scholar]
  13. Kashiwagi K, Suzuki T, Suzuki F, Furuchi T, Kobayashi H et al. Coexistence of the genes for putrescine transport protein and ornithine decarboxylase at 16 min on Escherichia coli chromosome. J Biol Chem 1991;266: 20922– 20927
    [Google Scholar]
  14. Hayes ET, Wilks JC, Sanfilippo P, Yohannes E, Tate DP et al. Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol 2006;6: 89 [CrossRef]
    [Google Scholar]
  15. Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 2005;187: 304– 319 [CrossRef]
    [Google Scholar]
  16. Hong W, Wu YE, Fu X, Chang Z. Chaperone-dependent mechanisms for acid resistance in enteric bacteria. Trends Microbiol 2012;20: 328– 335 [CrossRef]
    [Google Scholar]
  17. Brown JL, Ross T, McMeekin TA, Nichols PD. Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 1997;37: 163– 173 [CrossRef]
    [Google Scholar]
  18. Chang YY, Cronan JE. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 1999;33: 249– 259 [CrossRef]
    [Google Scholar]
  19. delaVega AL, Delcour AH. Cadaverine induces closing of E. coli porins. Embo J 1995;14: 6058– 6065 [CrossRef]
    [Google Scholar]
  20. Rowbury RJ, Goodson M, Wallace AD. The PhoE porin and transmission of the chemical stimulus for induction of acid resistance (acid habituation) in Escherichia coli. J Appl Bacteriol 1992;72: 233– 243 [CrossRef]
    [Google Scholar]
  21. Kanjee U, Houry WA. Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol 2013;67: 65– 81 [CrossRef]
    [Google Scholar]
  22. Dragosits M, Mattanovich D. Adaptive laboratory evolution - principles and applications for biotechnology. Microb Cell Fact 2013;12: 64 [CrossRef]
    [Google Scholar]
  23. Buermans HPJ, den Dunnen JT. Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842;2014: 1932– 1941
    [Google Scholar]
  24. Harden MM, He A, Creamer K, Clark MW, Hamdallah I et al. Acid-adapted strains of Escherichia coli K-12 obtained by experimental evolution. Appl Environ Microbiol 2015;81: 1932– 1941 [CrossRef]
    [Google Scholar]
  25. He A, Penix SR, Basting PJ, Griffith JM, Creamer KE et al. Acid evolution deletes amino-acid decarboxylases and reregulates catabolism of Escherichia coli K-12. Appl Environ Microbiol 2017; [CrossRef]
    [Google Scholar]
  26. LaCroix RA, Sandberg TE, O'Brien EJ, Utrilla J, Ebrahim A et al. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. Appl Environ Microbiol 2015;81: 17– 30 [CrossRef]
    [Google Scholar]
  27. Marotz C, Amir A, Humphrey G, Gaffney J, Gogul G et al. Dna extraction for streamlined metagenomics of diverse environmental samples. Biotechniques 2017;62: 290– 293 [CrossRef]
    [Google Scholar]
  28. Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol 2014;1151: 165– 188 [CrossRef]
    [Google Scholar]
  29. Chen S, Huang T, Zhou Y, Han Y, Xu M et al. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinformatics 2017;18: 80 [CrossRef]
    [Google Scholar]
  30. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009;10: R25 [CrossRef]
    [Google Scholar]
  31. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M et al. Software for computing and annotating genomic ranges. PLoS Comput Biol 2013;9: e1003118 [CrossRef]
    [Google Scholar]
  32. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol 2014;15: 550 [CrossRef]
    [Google Scholar]
  33. Wood EJ. Data for biochemical research Biochemistry and Molecular Biology Education15, 3rd ed. 1987; p 97 [CrossRef]
    [Google Scholar]
  34. Helmann JD. Rna polymerase: a nexus of gene regulation. Methods 2009;47: 1– 5 [CrossRef]
    [Google Scholar]
  35. Klein-Marcuschamer D, Santos CNS, Yu H, Stephanopoulos G. Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes. Appl Environ Microbiol 2009;75: 2705– 2711 [CrossRef]
    [Google Scholar]
  36. Sandberg TE, Pedersen M, LaCroix RA, Ebrahim A, Bonde M et al. Evolution of Escherichia coli to 42 °C and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Mol Biol Evol 2014;31: 2647– 2662 [CrossRef]
    [Google Scholar]
  37. Sandberg TE, Lloyd CJ, Palsson BO, Feist AM. Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies. Appl Environ Microbiol 2017;83: [CrossRef]
    [Google Scholar]
  38. McCloskey D, Xu S, Sandberg TE, Brunk E, Hefner Y et al. Evolution of gene knockout strains of E. coli reveal regulatory architectures governed by metabolism. Nat Commun 2018;9: 3796 [CrossRef]
    [Google Scholar]
  39. Conrad TM, Frazier M, Joyce AR, Cho BK, Knight EM et al. Rna polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc Natl Acad Sci USA 2010;107: 20500– 20505 [CrossRef]
    [Google Scholar]
  40. Cheng KK, Lee BS, Masuda T, Ito T, Ikeda K et al. Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol. Nat Commun 2014;5: 3233 [CrossRef]
    [Google Scholar]
  41. Wytock TP, Fiebig A, Willett JW, Herrou J, Fergin A et al. Experimental evolution of diverse Escherichia coli metabolic mutants identifies genetic loci for convergent adaptation of growth rate. PLoS Genet 2018;14: e1007284 [CrossRef]
    [Google Scholar]
  42. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000;28: 33– 36 [CrossRef]
    [Google Scholar]
  43. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016;44: D279– D285 [CrossRef]
    [Google Scholar]
  44. Severinov K, Mustaev A, Kukarin A, Muzzin O, Bass I et al. Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the beta and beta' subunits of Escherichia coli RNA polymerase. J Biol Chem 1996;271: 27969– 27974 [CrossRef]
    [Google Scholar]
  45. Cramer P, Bushnell DA, Kornberg RD. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 2001;292: 1863– 1876 [CrossRef]
    [Google Scholar]
  46. Sastry AV, Gao Y, Szubin R, Hefner Y, Xu S et al. The Escherichia coli transcriptome consists of independently regulated modules. bioRxiv [CrossRef]
    [Google Scholar]
  47. Foster JW. Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2004;2: 898– 907 [CrossRef]
    [Google Scholar]
  48. Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014;38: 1091– 1125 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000867
Loading
/content/journal/micro/10.1099/mic.0.000867
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error