1887

Abstract

Topoisomerase I (TopA) is an essential enzyme that is required to remove excess negative supercoils from chromosomal DNA. Actinobacteria encode unusual TopA homologues with a unique C-terminal domain that contains lysine repeats and confers high enzyme processivity. Interestingly, the longest stretch of lysine repeats was identified in TopA from , environmental bacteria that undergo complex differentiation and produce a plethora of secondary metabolites. In this review, we aim to discuss potential advantages of the lysine repeats in TopA. We speculate that the chromosome organization, transcriptional regulation and lifestyle of these species demand a highly processive but also fine-tuneable relaxase. We hypothesize that the unique TopA provides flexible control of chromosomal topology and globally regulates gene expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000841
2019-08-07
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/10.1099/mic.0.000841/mic000841.html?itemId=/content/journal/micro/10.1099/mic.0.000841&mimeType=html&fmt=ahah

References

  1. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 2016;80:1–43 [CrossRef]
    [Google Scholar]
  2. Scherr N, Nguyen L. Mycobacterium versus Streptomyces—we are different, we are the same. Curr Opin Microbiol 2009;12:699–707 [CrossRef]
    [Google Scholar]
  3. Jeong Y, Kim J-N, Kim MW, Bucca G, Cho S et al. The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat Commun 2016;7:11605 [CrossRef]
    [Google Scholar]
  4. van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2018;35:575–604 [CrossRef]
    [Google Scholar]
  5. Liu G, Chater KF, Chandra G, Niu G, Tan H et al. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 2013;77:112–143 [CrossRef]
    [Google Scholar]
  6. Lu F, Hou Y, Zhang H, Chu Y, Xia H. Regulatory genes and their roles for improvement of antibiotic biosynthesis in Streptomyces. 3 biotech. Springer Berlin Heidelberg 2017;7:1–15
    [Google Scholar]
  7. Baltz RH. Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J IND Microbiol Biotechnol. Springer Berlin Heidelberg 2016;43:343–370
    [Google Scholar]
  8. Flärdh K, Buttner MJ. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 2009;7:36–49 [CrossRef]
    [Google Scholar]
  9. McCormick JR, Flärdh K. Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 2012;36:206–231 [CrossRef]
    [Google Scholar]
  10. Bush MJ, Tschowri N, Schlimpert S, Flärdh K, Buttner MJ. C – di – GMP signalling and the regulation of developmental transitions in streptomycetes. NAT Rev Microbiol |. Nature Publishing Group 2015;13:749–760
    [Google Scholar]
  11. van der Meij A, Worsley SF, Hutchings MI, van Wezel GP, Der MAV, Van WGP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017;41:392–416 [CrossRef]
    [Google Scholar]
  12. Furlong EEM, Levine M. Developmental enhancers and chromosome topology. Science 2018;361:1341–1345 [CrossRef]
    [Google Scholar]
  13. de la Campa AG, Ferrándiz MJ, Martín-Galiano AJ, García MT, Tirado-Vélez JM. The Transcriptome of Streptococcus pneumoniae Induced by Local and Global Changes in Supercoiling. Front Microbiol 2017;8:1447 [CrossRef]
    [Google Scholar]
  14. Szafran M, Skut P, Ditkowski B, Ginda K, Chandra G et al. Topoisomerase I (topa) is recruited to ParB complexes and is required for proper chromosome organization during Streptomyces coelicolor sporulation. J Bacteriol 2013;195:4445–4455 [CrossRef]
    [Google Scholar]
  15. Swiercz JP, Nanji T, Gloyd M, Guarné A, Elliot MA. A novel nucleoid-associated protein specific to the actinobacteria. Nucleic Acids Res 2013;41:4171–4184 [CrossRef]
    [Google Scholar]
  16. Szafran MJ, Gongerowska M, Małecki T, Elliot M, Jakimowicz D. Transcriptional response of Streptomyces coelicolor to rapid chromosome relaxation or long-term supercoiling imbalance. Front Microbiol 2019;10:1605 [CrossRef]
    [Google Scholar]
  17. Urem M, Świątek-Połatyńska MA, Rigali S, van Wezel GP. Intertwining nutrient-sensory networks and the control of antibiotic production in Streptomyces. Mol Microbiol 2016;102:183–195 [CrossRef]
    [Google Scholar]
  18. Gehrke EJ, Zhang X, Pimentel-Elardo SM, Johnson AR, Rees CA et al. Silencing cryptic specialized metabolism in Streptomyces by the nucleoid-associated protein Lsr2. Elife 2019;8:e47691 [CrossRef]
    [Google Scholar]
  19. Kim H-J, Calcutt MJ, Schmidt FJ, Chater KF. Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) Involves an oriC-Linked parAB Locus. J Bacteriol 2000;182:1313–1320 [CrossRef]
    [Google Scholar]
  20. Jakimowicz D, van Wezel GP. Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere?. Mol Microbiol 2012;85:393–404 [CrossRef]
    [Google Scholar]
  21. Salerno P, Larsson J, Bucca G, Laing E, Smith CP et al. One of the two genes encoding nucleoid-associated HU proteins in Streptomyces coelicolor is developmentally regulated and specifically involved in spore maturation. J Bacteriol 2009;191:6489–6500 [CrossRef]
    [Google Scholar]
  22. Hitchings MD, Townsend P, Pohl E, Facey PD, Jones DH et al. A tale of tails: deciphering the contribution of terminal tails to the biochemical properties of two Dps proteins from Streptomyces coelicolor. Cell Mol Life Sci 2014;71:4911–4926 [CrossRef]
    [Google Scholar]
  23. Kois A, Swiatek M, Jakimowicz D, Zakrzewska-Czerwińska J et al. Smc protein-dependent chromosome condensation during aerial hyphal development in Streptomyces. J Bacteriol 2009;191:310–319 [CrossRef]
    [Google Scholar]
  24. Dedrick RM, Wildschutte H, McCormick JR. Genetic interactions of SMC, ftsK, and parB genes in Streptomyces coelicolor and their developmental genome segregation phenotypes. J Bacteriol 2009;191:320–332 [CrossRef]
    [Google Scholar]
  25. Szafran MJ, Strick T, Strzałka A, Zakrzewska-Czerwińska J, Jakimowicz D. A highly processive topoisomerase I: studies at the single-molecule level. Nucleic Acids Res 2014;42:7935–7946 [CrossRef]
    [Google Scholar]
  26. Strzałka A, Szafran MJ, Strick T, Jakimowicz D. C-Terminal lysine repeats in Streptomyces topoisomerase I stabilize the enzyme-DNA complex and confer high enzyme processivity. Nucleic Acids Res 2017;45:1190811924 [CrossRef]
    [Google Scholar]
  27. Wang JC. Protein omega from Escherichia coli. Methods Enzymol 1974;29:197–203 [CrossRef]
    [Google Scholar]
  28. Wang JC. Interaction between DNA and an Escherichia coli protein omega. J Mol Biol 1971;55:523–IN16 [CrossRef]
    [Google Scholar]
  29. Dorman CJ, Dorman MJ. DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys Rev 2016;8:89–100 [CrossRef]
    [Google Scholar]
  30. Magnan D, Bates D. Regulation of DNA replication initiation by chromosome structure. J Bacteriol 2015;197:3370–3377 [CrossRef]
    [Google Scholar]
  31. Usongo V, Drolet M. Roles of type 1A topoisomerases in genome main topoisomerases in genome maintenance in Escherichia coli. Burkholder WF, editor. PLoS Genet 2014;10:e1004543 [CrossRef]
    [Google Scholar]
  32. Kuzminov A. When DNA topology turns deadly - RNA polymerases dig in their r-loops to stand their ground: new positive and negative (Super)Twists in the Replication-Transcription Conflict. Trends Genet 2018;34:111–120 [CrossRef]
    [Google Scholar]
  33. Seol Y, Neuman KC. The dynamic interplay between DNA topoisomerases and DNA topology. Biophys Rev 2016;8:221–231 [CrossRef]
    [Google Scholar]
  34. Bush NG, Maxwell A, Evans-Roberts K. DNA topoisomerases. EcoSal Plus 2015;6: [CrossRef]
    [Google Scholar]
  35. Krah R, O'Dea MH, Gellert M. Reverse gyrase from Methanopyrus kandleri. reconstitution of an active extremozyme from its two recombinant subunits. J Biol Chem 1997;272:13986–13990 [CrossRef]
    [Google Scholar]
  36. Bugreev DV, Nevinsky GA. Structure and mechanism of action of type Ia DNA topoisomerases. Biochemistry 2009;74:1467–1481 [CrossRef]
    [Google Scholar]
  37. Schoeffler AJ, Berger JM. DNA topoisomerases : harnessing and constraining energy to govern chromosome topology. Q Rev Biophys 2008;1:41–101
    [Google Scholar]
  38. Forterre P, Gribaldo S, Gadelle D, Serre MC. Origin and evolution of DNA topoisomerases. Biochimie 2007;89:427–446 [CrossRef]
    [Google Scholar]
  39. Reuß DR, Faßhauer P, Mroch PJ, Ul-Haq I, Koo BM et al. Topoisomerase IV can functionally replace all type 1A topoisomerases in Bacillus subtilis. Nucleic Acids Res 2019
    [Google Scholar]
  40. Tse-Dinh Y-C. Bacterial topoisomerase I as a target for discovery of antibacterial compounds. Nucleic Acids Res 2009;37:731–737 [CrossRef]
    [Google Scholar]
  41. Terekhova K, Marko JF, Mondragón A. Studies of bacterial topoisomerases I and III at the single-molecule level. Biochem Soc Trans 2013;41:571–575 [CrossRef]
    [Google Scholar]
  42. Benarroch D, Claverie JM, Raoult D, Shuman S. Characterization of Mimivirus DNA topoisomerase IB suggests horizontal gene transfer between eukaryal viruses and bacteria. J Virol 2006;80:314–321 [CrossRef]
    [Google Scholar]
  43. Kumar R, Riley JE, Parry D, Bates AD, Nagaraja V. Binding of two DNA molecules by type II topoisomerases for decatenation. Nucleic Acids Res 2012;40:10904–10915 [CrossRef]
    [Google Scholar]
  44. Nagaraja V, Godbole AA, Henderson SR, Maxwell A. Dna topoisomerase I and DNA gyrase as targets for TB therapy. Drug Discov Today 2017;22:510–518 [CrossRef]
    [Google Scholar]
  45. Huang TW, Hsu CC, Yang HY, Chen CW. Topoisomerase IV is required for partitioning of circular chromosomes but not linear chromosomes in Streptomyces. Nucleic Acids Res 2013;41:10403–10413 [CrossRef]
    [Google Scholar]
  46. Bodenhofer U, Bonatesta E, Horejs C. Sequence analysis msa : an R package for multiple sequence alignment. Bioinformatics 2015;31:3997–3999
    [Google Scholar]
  47. Ahmed W, Bhat AG, Leelaram MN, Menon S, Nagaraja V. Carboxyl terminal domain basic amino acids of mycobacterial topoisomerase I bind DNA to promote strand passage. Nucleic Acids Res 2013;41:7462–7471 [CrossRef]
    [Google Scholar]
  48. Bhaduri T, Sikder D, Nagaraja V. Sequence specific interaction of Mycobacterium smegmatis topoisomerase I with duplex DNA. Nucleic Acids Res 1998;26:1668–1674 [CrossRef]
    [Google Scholar]
  49. Bao K, Cohen SN. Reverse transcriptase activity innate to DNA polymerase I and DNA topoisomerase I proteins of Streptomyces telomere complex. Proc Natl Acad Sci U S A 2004;101:14361–14366 [CrossRef]
    [Google Scholar]
  50. Terekhova K, Gunn KH, Marko JF, Mondragón A, Mondrago A. Bacterial topoisomerase I and topoisomerase III relax supercoiled DNA via distinct pathways. Nucleic Acids Res 2012;40:10432–10440 [CrossRef]
    [Google Scholar]
  51. Bhaduri T, Bagui TK, Sikder D, Nagaraja V. Dna topoisomerase I from Mycobacterium smegmatis. An enzyme with distinct features. J Biol Chem 1998;273:13925–13932
    [Google Scholar]
  52. Tan K, Zhou Q, Cheng B, Zhang Z, Joachimiak A et al. Structural basis for suppression of hypernegative DNA supercoiling by E. coli topoisomerase I. Nucleic Acids Res 2015;43:11031–11046 [CrossRef]
    [Google Scholar]
  53. Lu X, Hansen JC. Revisiting the structure and functions of the linker histone C-terminal tail domain. Biochem Cell Biol 2003;81:173–176 [CrossRef]
    [Google Scholar]
  54. Tan K, Cao N, Cheng B, Joachimiak A. Insights from the structure of Mycobacterium tuberculosis topoisomerase I with a novel protein fold. J Mol Biol 2015
    [Google Scholar]
  55. Hołówka J, Trojanowski D, Ginda K, Wojtaś B, Gielniewski B et al. Hupb is a bacterial nucleoid-associated protein with an indispensable eukaryotic-like tail. MBio 2017;8:e01272-17 [CrossRef]
    [Google Scholar]
  56. Kushwaha AK, Grove A. C-terminal low-complexity sequence repeats of Mycobacterium smegmatis Ku modulate DNA binding. Biosci Rep 2013;33:175–184 [CrossRef]
    [Google Scholar]
  57. Jain P, Nagaraja V, Indispensable NV. Indispensable, functionally complementing N and C-terminal domains constitute site-specific topoisomerase I. J Mol Biol 2006;357:1409–1421 [CrossRef]
    [Google Scholar]
  58. Ahumada A, Tse-Dinh Y-C. The role of the Zn (II) binding domain in the mechanism of E. coli DNA topoisomerase I. BMC Biochem 2002;13:1–13
    [Google Scholar]
  59. Szafran MJ, Gongerowska M, Gutkowski P, Zakrzewska-Czerwińska J, Jakimowicz D. The coordinated positive regulation of topoisomerase genes maintains topological homeostasis in Streptomyces coelicolor. J Bacteriol 2016;198:3016–3028 [CrossRef]
    [Google Scholar]
  60. Jha RK, Tare P, Nagaraja V. Regulation of the gyr operon of Mycobacterium tuberculosis by overlapping promoters, DNA topology, and reiterative transcription. Biochem Biophys Res Commun 2018;501:877–884 [CrossRef]
    [Google Scholar]
  61. Ferrándiz M-J, Martín-Galiano AJ, Arnanz C, Camacho-Soguero I, Tirado-Vélez J-M et al. An increase in negative supercoiling in bacteria reveals topology-reacting gene clusters and a homeostatic response mediated by the DNA topoisomerase I gene. Nucleic Acids Res 2016;169:gkw602–303 [CrossRef]
    [Google Scholar]
  62. Unniraman S, Nagaraja V. Regulation of DNA gyrase operon in Mycobacterium smegmatis: a distinct mechanism of relaxation stimulated transcription. Genes Cells 1999;4:697–706 [CrossRef]
    [Google Scholar]
  63. Calcutt MJ. Gene organization in the dnaA-gyrA region of the Streptomyces coelicolor chromosome. Gene 1994;151:23–28 [CrossRef]
    [Google Scholar]
  64. Duggin IG, Wake RG, Bell SD, Hill TM. The replication fork trap and termination of chromosome replication. Mol Microbiol 2008;70:1323–1333 [CrossRef]
    [Google Scholar]
  65. Menzel R, Gellert M. Modulation of transcription by DNA supercoiling: a deletion analysis of the Escherichia coli gyrA and gyrB promoters. Proc Natl Acad Sci U S A 1987;84:4185–4189 [CrossRef]
    [Google Scholar]
  66. Lampe MF, Bott KF. Genetic and physical organization of the cloned gyrA and gyrB genes of Bacillus subtilis. J Bacteriol 1985;162:78–84
    [Google Scholar]
  67. Qi H, Menzel R, Tse-Dinh YC. Regulation of Escherichia coli topA gene transcription: involvement of a σ S -dependent promoter 1 1Edited by M. Gottesman. J Mol Biol 1997;267:481–489 [CrossRef]
    [Google Scholar]
  68. Ahmed W, Menon S, Karthik PVDNB, Nagaraja V. Autoregulation of topoisomerase I expression by supercoiling sensitive transcription. Nucleic Acids Res 2016;44:1541–1552 [CrossRef]
    [Google Scholar]
  69. Kang JG, Hahn MY, Ishihama A, Roe JH. Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2). Nucleic Acids Res 1997;25:2566–2573 [CrossRef]
    [Google Scholar]
  70. Typas A, Hengge R. Role of the spacer between the -35 and -10 regions in sigmaS promoter selectivity in Escherichia coli. Mol Microbiol 2006;59:1037–1051 [CrossRef]
    [Google Scholar]
  71. Reckinger AR, Jeong KS, Khodursky AB, Hiasa H. Reca can stimulate the relaxation activity of topoisomerase I: molecular basis of topoisomerase-mediated genome-wide transcriptional responses in Escherichia coli. Nucleic Acids Res 2007;35:79–86 [CrossRef]
    [Google Scholar]
  72. Banda S, Tiwari PB, Darici Y, Tse-Dinh Y-C. Investigating direct interaction between Escherichia coli topoisomerase I and RecA. Gene 2016;585:65–70 [CrossRef]
    [Google Scholar]
  73. Zhou Q, Zhou YN, Jin DJ, Tse-Dinh YC. Deacetylation of topoisomerase I is an important physiological function of E. coli CobB. Nucleic Acids Res 2017;45:5349–5358 [CrossRef]
    [Google Scholar]
  74. Ghosh S, Mallick B, Nagaraja V. Direct regulation of topoisomerase activity by a nucleoid-associated protein. Nucleic Acids Res 2014;42:11156–11165 [CrossRef]
    [Google Scholar]
  75. Huang F, He ZG. Characterization of an interplay between a Mycobacterium tuberculosis MazF homolog, Rv1495 and its sole DNA topoisomerase I. Nucleic Acids Res 2010;38:8219–8230 [CrossRef]
    [Google Scholar]
  76. Banda S, Cao N, Tse-Dinh YC. Distinct mechanism evolved for mycobacterial RNA polymerase and topoisomerase I protein-protein interaction. J Mol Biol 2017;429:2931–2942 [CrossRef]
    [Google Scholar]
  77. Cheng B, Zhu CX, Ji C, Ahumada A, Tse-Dinh YC. Direct interaction between Escherichia coli RNA polymerase and the zinc ribbon domains of DNA topoisomerase I. J Biol Chem 2003;278:30705–30710 [CrossRef]
    [Google Scholar]
  78. Tiwari PB, Chapagain PP, Banda S, Darici Y, Üren A et al. Characterization of molecular interactions between Escherichia coli RNA polymerase and topoisomerase I by molecular simulations. FEBS Lett 2016;590:2844–2851 [CrossRef]
    [Google Scholar]
  79. Compton CL, Fernandopulle MS, Nagari RT, Sello JK. Genetic and proteomic analyses of pupylation in Streptomyces coelicolor. J Bacteriol 2015;197:2747–2753 [CrossRef]
    [Google Scholar]
  80. Pearce MJ, Mintseris J, Ferreyra J, Gygi SP, Darwin KH. Ubiquitin-Like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 2008;322:1104–1107 [CrossRef]
    [Google Scholar]
  81. Zhou Y, Chen T, Zhou L, Fleming J, Deng J et al. Discovery and characterization of Ku acetylation in Mycobacterium smegmatis. FEMS Microbiol Lett 2015;362: [CrossRef]
    [Google Scholar]
  82. Ghosh S, Padmanabhan B, Anand C, Nagaraja V. Lysine acetylation of the Mycobacterium tuberculosis HU protein modulates its DNA binding and genome organization. Mol Microbiol 2016;100:577–588 [CrossRef]
    [Google Scholar]
  83. Anand C, Garg R, Ghosh S, Nagaraja V. A Sir2 family protein Rv1151c deacetylates HU to alter its DNA binding mode in Mycobacterium tuberculosis. Biochem Biophys Res Commun 2017;493:1204–1209 [CrossRef]
    [Google Scholar]
  84. Facey PD, Hitchings MD, Saavedra-Garcia P, Fernandez-Martinez L, Dyson PJ et al. Streptomyces coelicolor Dps-like proteins: differential dual roles in response to stress during vegetative growth and in nucleoid condensation during reproductive cell division. Mol Microbiol 2009;73:1186–1202 [CrossRef]
    [Google Scholar]
  85. Donczew M, Mackiewicz P, Wróbel A, Flärdh K, Zakrzewska-Czerwińska J et al. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation. Open Biol 2016;6:150263 [CrossRef]
    [Google Scholar]
  86. Chater KF. Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc Lond B Biol Sci 2006;361:761–768 [CrossRef]
    [Google Scholar]
  87. Ruban-Ośmiałowska B, Jakimowicz D, Smulczyk-Krawczyszyn A, Chater KF, Zakrzewska-Czerwińska J. Replisome localization in vegetative and aerial hyphae of Streptomyces coelicolor. J Bacteriol 2006;188:7311–7316 [CrossRef]
    [Google Scholar]
  88. Jakimowicz D, Żydek P, Kois A, Zakrzewska-Czerwińska J, Chater KF. Alignment of multiple chromosomes along helical para scaffolding in sporulating Streptomyces hyphae. Mol Microbiol 2007;65:625–641 [CrossRef]
    [Google Scholar]
  89. Jakimowicz D, Gust B, Zakrzewska-Czerwińska J, Chater KF, Zakrzewska-Czerwinska J. Developmental-stage-specific assembly of ParB complexes in Streptomyces coelicolor hyphae. J Bacteriol 2005;187:3572–3580 [CrossRef]
    [Google Scholar]
  90. Jakimowicz D, Mouz S, Zakrzewska-Czerwińska J, Chater KF. Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor. J Bacteriol 2006;188:1710–1720 [CrossRef]
    [Google Scholar]
  91. Schumacher MA. Bacterial nucleoid occlusion: multiple mechanisms for preventing chromosome bisection during cell division. Subcell Biochem 2017;84:267–298 [CrossRef]
    [Google Scholar]
  92. Wu LJ, Errington J. Nucleoid occlusion and bacterial cell division. Nat Rev Microbiol 2011;10:8–12 [CrossRef]
    [Google Scholar]
  93. Ditkowski B, Troć P, Ginda K, Donczew M, Chater KF et al. The actinobacterial signature protein ParJ (SCO1662) regulates para polymerization and affects chromosome segregation and cell division during Streptomyces sporulation. Mol Microbiol 2010;78:1403–1415 [CrossRef]
    [Google Scholar]
  94. Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO et al. Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. 2004;51–16
  95. Ferrándiz MJ, Martín-Galiano AJ, Schvartzman JB, de la Campa AG. The genome of Streptococcus pneumoniae is organized in topology-reacting gene clusters. Nucleic Acids Res 2010;38:3570–3581 [CrossRef]
    [Google Scholar]
  96. Gmuender H, Kuratli K, Di PK, Gray CP, Keck W. Gene expression changes triggered by exposure of Haemophilus influenzae to novobiocin or ciprofloxacin: combined transcription and translation analysis. Genome Res 2001;11:28–42 [CrossRef]
    [Google Scholar]
  97. Guha S, Udupa S, Ahmed W, Nagaraja V. Rewired downregulation of DNA gyrase impacts cell division, expression of topology modulators, and transcription in Mycobacterium smegmatis. J Mol Biol 2018;430:4986–5001 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000841
Loading
/content/journal/micro/10.1099/mic.0.000841
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error