1887

Abstract

In recent years, the alkyl-quinolone molecular framework has already provided a rich source of bioactivity for the development of novel anti-infective compounds. Based on the quorum-sensing signalling molecules 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS) from the nosocomial pathogen , modifications have been developed with markedly enhanced anti-biofilm bioactivity towards important fungal and bacterial pathogens, including and . Here we show that antibacterial activity of HHQ against is species-specific and it requires an exquisite level of structural fidelity within the alkyl-quinolone molecular framework. Antibacterial activity was demonstrated against the serious human pathogens and as well as a panel of bioluminescent squid symbiont isolates. In contrast, growth and biofilm formation was unaffected in the presence of HHQ and all the structural variants tested. In general, modification to almost all of the molecule except the alkyl-chain end, led to loss of activity. This suggests that the bacteriostatic activity of HHQ requires the concerted action of the entire framework components. The only exception to this pattern was deuteration of HHQ at the C3 position. HHQ modified with a terminal alkene at the quinolone alkyl chain retained bacteriostatic activity and was also found to activate PqsR signalling comparable to the native agonist. The data from this integrated analysis provides novel insights into the structural flexibility underpinning the signalling activity of the complex alkyl-quinolone molecular communication system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000876
2019-12-20
2020-01-27
Loading full text...

Full text loading...

References

  1. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015;6:26–41 [CrossRef]
    [Google Scholar]
  2. Lund-Palau H, Turnbull AR, Bush A, Bardin E, Cameron L et al. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches. Expert Rev Respir Med 2016;10:685–697 [CrossRef]
    [Google Scholar]
  3. Park SK, Lee WC, Lee DH, Mitnick CD, Han L et al. Self-Administered, standardized regimens for multidrug-resistant tuberculosis in South Korea. Int J Tuberc Lung D 2004;8:361–368
    [Google Scholar]
  4. Tashiro Y, Yawata Y, Toyofuku M, Uchiyama H, Nomura N. Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microbes Environ 2013;28:13–24 [CrossRef]
    [Google Scholar]
  5. Dulcey CE, Dekimpe V, Fauvelle D-A, Milot S, Groleau M-C et al. The end of an old hypothesis: the Pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. Chem Biol 2013;20:1481–1491 [CrossRef]
    [Google Scholar]
  6. Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol 2017;7:39 [CrossRef]
    [Google Scholar]
  7. O'Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF et al. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A 2013;110:17981–17986 [CrossRef]
    [Google Scholar]
  8. Déziel E, Lépine F, Milot S, He J, Mindrinos MN et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 2004;101:1339–1344 [CrossRef]
    [Google Scholar]
  9. Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR et al. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 2007;14:87–96 [CrossRef]
    [Google Scholar]
  10. Reen FJ, Barret M, Fargier E, O'Muinneacháin M, O'Gara F, O’Gara F. Molecular evolution of LysR-type transcriptional regulation in Pseudomonas aeruginosa. Mol Phylogenet Evol 2013;66:1041–1049 [CrossRef]
    [Google Scholar]
  11. Ó Muimhneacháin E, Reen FJ, O'Gara F, McGlacken GP. Analogues of Pseudomonas aeruginosa signalling molecules to tackle infections. Org Biomol Chem 2018;16:169–179 [CrossRef]
    [Google Scholar]
  12. Szamosvári D, Böttcher T. An Unsaturated Quinolone N -Oxide of Pseudomonas aeruginosa Modulates Growth and Virulence of Staphylococcus aureus. Angew. Chem. Int. Ed. 2017;56:7271–7275 [CrossRef]
    [Google Scholar]
  13. Hodgkinson JT, Gross J, Baker YR, Spring DR, Welch M. A new Pseudomonas quinolone signal (PQS) binding partner: MexG. Chem Sci 2016;7:2553–2562 [CrossRef]
    [Google Scholar]
  14. Lu C, Kirsch B, Zimmer C, de Jong JC, Henn C et al. Discovery of antagonists of PqsR, a key player in 2-alkyl-4-quinolone-dependent quorum sensing in Pseudomonas aeruginosa. Chem Biol 2012;19:381–390 [CrossRef]
    [Google Scholar]
  15. Maura D, Rahme LG. Pharmacological Inhibition of the Pseudomonas aeruginosa MvfR Quorum-Sensing System Interferes with Biofilm Formation and Potentiates Antibiotic-Mediated Biofilm Disruption. Antimicrob Agents Chemother 2017;61: [CrossRef]
    [Google Scholar]
  16. Reen FJ, McGlacken GP, O'Gara F. The expanding horizon of alkyl quinolone signalling and communication in polycellular interactomes. FEMS Microbiol Lett 2018;365: [CrossRef]
    [Google Scholar]
  17. Reen FJ, Mooij MJ, Holcombe LJ, McSweeney CM, McGlacken GP et al. The Pseudomonas quinolone signal (PQS), and its precursor HHQ, modulate interspecies and interkingdom behaviour. FEMS Microbiol Ecol 2011;77:413–428 [CrossRef]
    [Google Scholar]
  18. Shanahan R, Reen FJ, Cano R, O'Gara F, McGlacken GP. The requirements at the C-3 position of alkylquinolones for signalling in Pseudomonas aeruginosa. Org Biomol Chem 2017;15:306–310 [CrossRef]
    [Google Scholar]
  19. Thierbach S, Wienhold M, Fetzner S, Hennecke U. Synthesis and biological activity of methylated derivatives of the Pseudomonas metabolites HHQ, HQNO and PQS. Beilstein J Org Chem 2019;15:187–193 [CrossRef]
    [Google Scholar]
  20. Fugère A, Lalonde Séguin D, Mitchell G, Déziel E, Dekimpe V et al. Interspecific Small Molecule Interactions between Clinical Isolates of Pseudomonas aeruginosa and Staphylococcus aureus from Adult Cystic Fibrosis Patients. PLoS One 2014;9:e86705 [CrossRef]
    [Google Scholar]
  21. Reen FJ, Phelan JP, Gallagher L, Woods DF, Shanahan RM et al. Exploiting Interkingdom Interactions for Development of Small-Molecule Inhibitors of Candida albicans Biofilm Formation. Antimicrob Agents Chemother 2016;60:5894–5905 [CrossRef]
    [Google Scholar]
  22. Reen FJ, Phelan JP, Woods DF, Shanahan R, Cano R et al. Harnessing Bacterial Signals for Suppression of Biofilm Formation in the Nosocomial Fungal Pathogen Aspergillus fumigatus. Front Microbiol 2016;7: [CrossRef]
    [Google Scholar]
  23. Ritzmann NH, Mährlein A, Ernst S, Hennecke U, Drees SL et al. Bromination of alkyl quinolones by Microbulbifer sp. HZ11, a marine gammaproteobacterium, modulates their antibacterial activity. Environ Microbiol 2019;21:25952609 [CrossRef]
    [Google Scholar]
  24. Hoffmann M, Fischer M, Ottesen A, McCarthy PJ, Lopez JV et al. Population dynamics of Vibrio spp. associated with marine sponge microcosms. Isme J 2010;4:1608–1612 [CrossRef]
    [Google Scholar]
  25. Jayatilake GS, Thornton MP, Leonard AC, Grimwade JE, Baker BJ. Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J Nat Prod 1996;59:293–296 [CrossRef]
    [Google Scholar]
  26. McGlacken GP, McSweeney CM, O’Brien T, Lawrence SE, Elcoate CJ et al. Synthesis of 3-halo-analogues of HHQ, subsequent cross-coupling and first crystal structure of Pseudomonas quinolone signal (PQS). Tetrahedron Lett 2010;51:5919–5921 [CrossRef]
    [Google Scholar]
  27. Reen FJ, Shanahan R, Cano R, O'Gara F, McGlacken GP. A structure activity-relationship study of the bacterial signal molecule HHQ reveals swarming motility inhibition in Bacillus atrophaeus. Org Biomol Chem 2015;13:5537–5541 [CrossRef]
    [Google Scholar]
  28. Han N, Mizan MFR, Jahid IK, Ha S-D. Biofilm formation by Vibrio parahaemolyticus on food and food contact surfaces increases with rise in temperature. Food Control 2016;70:161–166 [CrossRef]
    [Google Scholar]
  29. McGrath S, Wade DS, Pesci EC. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol Lett 2004;230:27–34 [CrossRef]
    [Google Scholar]
  30. Shanahan RM, Hickey A, Reen FJ, O'Gara F, McGlacken GP. Synthesis of Benzofuroquinolines via Phosphine-Free direct arylation of 4-Phenoxyquinolines in air. European J Org Chem 2018;2018:6140–6149 [CrossRef]
    [Google Scholar]
  31. Timmins GS. Deuterated drugs: where are we now?. Expert Opin Ther Pat 2014;24:1067–1075 [CrossRef]
    [Google Scholar]
  32. Soh EY-C, Chhabra SR, Halliday N, Heeb S, Müller C et al. Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule. Environ Microbiol 2015;17:4352–4365 [CrossRef]
    [Google Scholar]
  33. Tettmann B, Niewerth C, Kirschhofer F, Neidig A, Dotsch A et al. Enzyme-Mediated Quenching of the Pseudomonas Quinolone Signal (PQS) Promotes Biofilm Formation of Pseudomonas aeruginosa by Increasing Iron Availability. Front Microbiol 1978;2016:7
    [Google Scholar]
  34. Diggle SP, Winzer K, Chhabra SR, Worrall KE, Cámara M et al. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 2003;50:29–43 [CrossRef]
    [Google Scholar]
  35. Salvaggio F, Hodgkinson JT, Carro L, Geddis SM, Galloway W et al. The Synthesis of Quinolone Natural Products from Pseudonocardia sp. Eur J Org Chem 2016;3:434–437
    [Google Scholar]
  36. Häussler S, Becker T. The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog 2008;4:e1000166 [CrossRef]
    [Google Scholar]
  37. Meirelles LA, Newman DK. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol Microbiol 2018;110:995–1010 [CrossRef]
    [Google Scholar]
  38. Hodgkinson J, Bowden SD, Galloway WRJD, Spring DR, Welch M. Structure-Activity analysis of the Pseudomonas quinolone signal molecule. J Bacteriol 2010;192:3833–3837 [CrossRef]
    [Google Scholar]
  39. Gant TG. Using deuterium in drug discovery: leaving the label in the drug. J Med Chem 2014;57:3595–3611 [CrossRef]
    [Google Scholar]
  40. Mullard A. Deuterated drugs draw heavier backing. Nat Rev Drug Discov 2016;15:219–221 [CrossRef]
    [Google Scholar]
  41. Pustelny C, Albers A, Büldt-Karentzopoulos K, Parschat K, Chhabra SR et al. Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa. Chem Biol 2009;16:1259–1267 [CrossRef]
    [Google Scholar]
  42. Kamal AAM, Petrera L, Eberhard J, Hartmann RW. Structure-functionality relationship and pharmacological profiles of Pseudomonas aeruginosa alkylquinolone quorum sensing modulators. Org Biomol Chem 2017;15:4620–4630 [CrossRef]
    [Google Scholar]
  43. Lu C, Maurer CK, Kirsch B, Steinbach A, Hartmann RW. Overcoming the Unexpected Functional Inversion of a PqsR Antagonist in Pseudomonas aeruginosa : An In Vivo Potent Antivirulence Agent Targeting pqs Quorum Sensing. Angew. Chem. Int. Ed. 2014;53:1109–1112 [CrossRef]
    [Google Scholar]
  44. Mashburn-Warren L, Howe J, Brandenburg K, Whiteley M. Structural requirements of the Pseudomonas quinolone signal for membrane vesicle stimulation. J Bacteriol 2009;191:3411–3414 [CrossRef]
    [Google Scholar]
  45. Schertzer JW, Brown SA, Whiteley M. Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol Microbiol 2010;77:1527–1538 [CrossRef]
    [Google Scholar]
  46. Geddis SM, Carro L, Hodgkinson JT, Spring DR. Divergent Synthesis of Quinolone Natural Products from Pseudonocardia sp. CL38489. European J Org Chem 2016;2016:5799–5802 [CrossRef]
    [Google Scholar]
  47. Thierbach S, Birmes FS, Letzel MC, Hennecke U, Fetzner S. Chemical modification and detoxification of the Pseudomonas aeruginosa toxin 2-heptyl-4-hydroxyquinoline N-oxide by environmental and pathogenic bacteria. ACS Chem Biol 2017;12:2305–2312 [CrossRef]
    [Google Scholar]
  48. Voggu L, Schlag S, Biswas R, Rosenstein R, Rausch C et al. Microevolution of cytochrome bd oxidase in staphylococci and its implication in resistance to respiratory toxins released by Pseudomonas. J Bacteriol 2006;188:8079–8086 [CrossRef]
    [Google Scholar]
  49. Basler M, Ho BT, Mekalanos JJ. Tit-for-Tat: type VI secretion system Counterattack during bacterial cell-cell interactions. Cell 2013;152:884–894 [CrossRef]
    [Google Scholar]
  50. Corbitt J, Yeo JS, Davis CI, LeRoux M, Wiggins PA. Type VI Secretion System Dynamics Reveals a Novel Secretion Mechanism in Pseudomonas aeruginosa. J Bacteriol 2018;200: [CrossRef]
    [Google Scholar]
  51. Toska J, Ho BT, Mekalanos JJ. Exopolysaccharide protects Vibrio cholerae from exogenous attacks by the type 6 secretion system. Proc Natl Acad Sci U S A 2018;115:7997–8002 [CrossRef]
    [Google Scholar]
  52. Hedlund BP, Staley JT. Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int J Syst Evol Microbiol 2001;51:61–66 [CrossRef]
    [Google Scholar]
  53. West PA, Okpokwasili GC, Brayton PR, Grimes DJ, Colwell RR. Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay. Appl Environ Microb 1984;48:988–993
    [Google Scholar]
  54. Birmes FS, Wolf T, Kohl TA, Rüger K, Bange F et al. Mycobacterium abscessus subsp. abscessus Is Capable of Degrading Pseudomonas aeruginosa Quinolone Signals. Front Microbiol 2017;8:339 [CrossRef]
    [Google Scholar]
  55. Müller C, Birmes FS, Rückert C, Kalinowski J, Fetzner S. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation. Appl Environ Microbiol 2015;81:7720–7729 [CrossRef]
    [Google Scholar]
  56. Hodgkinson JT, Galloway WRJD, Saraf S, Baxendale IR, Ley SV et al. Microwave and flow syntheses of Pseudomonas quinolone signal (PQS) and analogues. Org Biomol Chem 2011;9:57–61 [CrossRef]
    [Google Scholar]
  57. Baker YR, Hodgkinson JT, Florea BI, Alza E, Galloway WRJD et al. Identification of new quorum sensing autoinducer binding partners in Pseudomonas aeruginosa using photoaffinity probes. Chem Sci 2017;8:7403–7411 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000876
Loading
/content/journal/micro/10.1099/mic.0.000876
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error