-
Volume 163,
Issue 2,
2017
Volume 163, Issue 2, 2017
- Review
-
-
-
Lantibiotics produced by Actinobacteria and their potential applications (a review)
More LessThe phylum Actinobacteria, which comprises a great variety of Gram-positive bacteria with a high G+C content in their genomes, is known for its large production of bioactive compounds, including those with antimicrobial activity. Among the antimicrobials, bacteriocins, ribosomally synthesized peptides, represent an important arsenal of potential new drugs to face the increasing prevalence of resistance to antibiotics among microbial pathogens. The actinobacterial bacteriocins form a heterogeneous group of substances that is difficult to adapt to most proposed classification schemes. However, recent updates have accommodated efficiently the diversity of bacteriocins produced by this phylum. Among the bacteriocins, the lantibiotics represent a source of new antimicrobials to control infections caused mainly by Gram-positive bacteria and with a low propensity for resistance development. Moreover, some of these compounds have additional biological properties, exhibiting activity against viruses and tumour cells and having also potential to be used in blood pressure or inflammation control and in pain relief. Thus, lantibiotics already described in Actinobacteria exhibit potential practical applications in medical settings, food industry and agriculture, with examples at different stages of pre-clinical and clinical trials.
-
-
- Biotechnology
-
-
-
Exploring the parameters of post-segregational killing using heterologous expression of secreted toxin barnase and antitoxin barstar in an Escherichia coli case study
More LessPost-segregational killing (PSK) is a phenotype determined by plasmids using a toxin and an antitoxin gene pair. Loss of the genes depletes the cell's reserve of antitoxin and allows the toxin to act upon the cell. PSK benefits mobile elements when it increases reproductive success relative to other mobile competitors. A side effect of PSK is that plasmids become refractory to displacement from the cell during growth as a monoculture. Most PSK systems use a cytoplasmic toxin, but the external toxins of bacteriocins also have a PSK-like effect. It may be that any toxin and antitoxin gene pair can demonstrate PSK when it is on a plasmid. The secreted ribonuclease barnase and its protein inhibitor barstar have features in common with PSK modules, though their native context is chromosomal. We hypothesized that their recruitment to a plasmid could produce an emergent PSK phenotype. Others had shown that secreted barnase could exert a lethal effect on susceptible bacteria similarly to bacteriocins. However, barnase toxicity did not occur under the conditions tested, suggesting that barnase is toxic to neighbouring cells only under very specific conditions. Bacteriocins are only produced under some conditions, and some conditionality on toxin function or release may be advantageous in general to PSKs with external toxins because it would prevent killing of potential plasmid-naive hosts. Too much conditionality, however, would limit how advantageous the gene pair was to mobile elements, making the genes unlikely to be recruited as a PSK system.
-
-
-
-
The whcD gene of Corynebacterium glutamicum plays roles in cell division and envelope formation
More LessIn this study, we analysed the whcD gene from Corynebacteriumglutamicum, which encodes a homologue of whiB, a Streptomycescoelicolor gene required for the sporulation of aerial hyphae. Deletion of the gene (ΔwhcD) severely affected cell growth in C. glutamicum. The ΔwhcD strain exhibited a large filamentous, branched and bud-shaped morphology with multiple septa. The transcription levels of the cell division genes involved in Z-ring assembly and septal peptidoglycan synthesis, including ftsZ, sepF, ftsQ and ftsI, were markedly decreased in the ΔwhcD strain. The divIVA gene, which is responsible for apical growth, also showed decreased transcription in the ΔwhcD strain. However, genes involved in the later stages of cell division, such as cell separation and chromosome segregation, did not show notable changes in their transcription levels. Moreover, the mutant strain was susceptible to inhibitors of transpeptidation, including penicillin and vancomycin. In addition, the transcription of genes fas-IA, fas-IB and accD1, which participate in the synthesis of fatty acid and cell envelope component mycolic acid, was altered in the ΔwhcD strain. This increased the cell surface hydrophobicity in the mutant strain, apparently leading to cell aggregation in liquid media. These findings indicate that whcD is a whiB-like gene with roles in the early stages of cell division and fatty acid synthesis, and the pleiotropic phenotypes of the ΔwhcD strain suggest that whcD may be a global regulatory gene.
-
- Cell Biology
-
-
-
Deletion of a putative NlpC/P60 endopeptidase BAS1812 affects germination, long-term survival and endospore formation in Bacillus anthracis
More LessBacillus anthracis, an aetiologic agent of the zoonotic disease anthrax, encodes a putative NlpC/P60 endopeptidase BAS1812. It harbours a signal peptide, three bacterial SH3 domains and an NlpC/P60 family domain. Previous studies showed that BAS1812 is immunogenic in infected hosts and is a potential biomarker for anthrax treatment. To date, however, little information is known about its function and involvement in anthrax pathogenesis. Here we describe the phenotypic effect of BAS1812 deletion in B. anthracis Sterne strain. Transcriptional analysis showed that BAS1812 expression in a host-like environment was enhanced at the end of log phase, started to diminish after entry to stationary phase and increased again late in stationary phase. The constructed BAS1812 mutant showed impaired long-term survival in the stationary growth phase, less resilience to detergent, lesser endospore formation and delayed germination. The mutant also showed diminished ability to degrade peptidoglycan, but its ability to produce anthrax exotoxins was not affected. We hypothesize that BAS1812 is a cell wall hydrolase involved in biological activities related to maintaining cell wall integrity, sporulation and spore germination.
-
-
-
-
Viscosity-dependent variations in the cell shape and swimming manner of Leptospira
More LessSpirochaetes are spiral or flat-wave–shaped Gram-negative bacteria that have periplasmic flagella between the peptidoglycan layer and outer membrane. Rotation of the periplasmic flagella transforms the cell body shape periodically, allowing the cell to swim in aqueous environments. Because the virulence of motility-deficient mutants of pathogenic species is drastically attenuated, motility is thought to be an essential virulence factor in spirochaetes. However, it remains unknown how motility practically contributes to the infection process. We show here that the cell body configuration and motility of the zoonotic spirochaete Leptospira changes depending on the viscosity of the medium. Leptospira swim and reverse the swimming direction by transforming the cell body. Motility analysis showed that the frequency of cell shape transformation was increased by increasing the viscosity of the medium. The increased cell body transformation induced highly frequent reversal of the swimming direction. A simple kinetic model based on the experimental results shows that the viscosity-induced increase in reversal limits cell migration, resulting in the accumulation of cells in high-viscosity regions. This behaviour could facilitate the colonization of the spirochaete on host tissues covered with mucosa.
-
- Host-Microbe Interaction
-
-
-
The intestinal proteome of diabetic and control children is enriched with different microbial and host proteins
In this study, the intestinal microbial proteome of children with established type 1 diabetes (T1D) was compared with the proteome of healthy children (Control) with the aim to identify differences in the activity of the intestinal microbiota that not only will contribute to a deeper knowledge of the functionality of the gut in these children but also may provide new approaches to improve the control of the disease. Faecal protein extracts collected from three T1D children (aged 9.3±0.6 years) and three Control children (aged 9.3±1.5 years) were analysed using a combination of 2D gel electrophoresis and spectral counting. The results evidenced markedly differences between the intestinal proteome of T1D children and the Control. The T1D microbial intestinal proteome was enriched with proteins of clostridial cluster XVa and cluster IV and Bacteroides. In contrast, the Control proteome was enriched with bifidobacterial proteins. In both groups, proteins with moonlight function were observed. Human proteins also distinguished the two groups with T1D children depleted in exocrine pancreatic enzymes.
-
-
- Physiology and Metabolism
-
-
-
Identification of lysophospholipase protein from Spiroplasma eriocheiris and verification of its function
More LessSpiroplasma eriocheiris is known to cause tremor disease in the Chinese mitten crab Eriocheir sinensis; however, the molecular characterization of this pathogen is still unclear. S. eriocheiris has the ability to invade and survive within mouse 3T6 cells. The invasion process may require causing damage to the host cell membrane by chemical, physical or enzymatic means. In this study, we systematically characterized a novel lysophospholipase (lysoPL) of S. eriocheiris TDA-040725-5T. The gene that encodes lysoPL in S. eriocheiris (SE-LysoPL) was cloned, sequenced and expressed in Escherichia coli BL21 (DE3). Enzymatic assays revealed that the purified recombinant SE-LysoPL hydrolysed long-chain acyl esterases at pH 7 and 30 °C. SE-LysoPL was detected in the membrane and cytoplasmic protein fractions using the SE-LysoPL antibody in Western blot. The virulence ability of S. eriocheiris was effectively reduced at the early stage of infection (m.o.i.=100) by the SE-LysoPL antibody neutralization test. To the best of our knowledge, this is the first study to identify and characterize a gene from S. eriocheiris encoding a protein exhibiting lysoPL and esterase activities. Our findings indicate that SE-LysoPL plays important roles in the pathogenicity of S. eriocheiris.
-
-
-
-
Lack of formylated methionyl-tRNA has pleiotropic effects on Bacillus subtilis
More LessBacteria initiate translation using a modified amino acid, N-formylmethionine (fMet), adapted specifically for this function. Most proteins are processed co-translationally by peptide deformylase (PDF) to remove this modification. Although PDF activity is essential in WT cells and is the target of the antibiotic actinonin, bypass mutations in the fmt gene that eliminate the formylation of Met-tRNAMet render PDF dispensable. The extent to which the emergence of fmt bypass mutations might compromise the therapeutic utility of actinonin is determined, in part, by the effects of these bypass mutations on fitness. Here, we characterize the phenotypic consequences of an fmt null mutation in the model organism Bacillus subtilis. An fmt null mutant is defective for several post-exponential phase adaptive programmes including antibiotic resistance, biofilm formation, swarming and swimming motility and sporulation. In addition, a survey of well-characterized stress responses reveals an increased sensitivity to metal ion excess and oxidative stress. These diverse phenotypes presumably reflect altered synthesis or stability of key proteins involved in these processes.
-
-
-
Poly(A) polymerase I participates in the indole regulatory pathway of Pantoea agglomerans YS19
More LessPantoea agglomerans YS19 is a preponderant endophytic bacterium isolated from rice. It is characterized by the formation of symplasmata, a type of multicellular aggregate structure, contributing to a strong stress resistance and specific adaptation of YS19 in endophyte–host associations. Indole is an important signal molecule in intra- or interspecies relationships, regulating a variety of bacterial behaviours such as cell aggregation and stress resistance; however, the regulatory mechanism remains an ongoing area of investigation. This study selected YS19 as a model strain to construct a mutant library, utilizing the mTn5 transposon mutagenesis method, thus obtaining a positive mutant with an indole-inhibited mutation gene. Via thermal asymmetric interlaced PCR, the mutational site was identified as the gene of pcnB, which encodes the poly(A) polymerase I to catalyse the polyadenylation of RNAs. The full length of the pcnB sequence was 1332 bp, and phylogenetic analysis revealed that pcnB is extremely conserved among strains of P. agglomerans. The expression of the gene was significantly inhibited (by 36.6 % as detected via quantitative PCR) by indole (0.5 mM). Many physiological behaviours of YS19 were affected by this mutation: the cell decay rate in the post-stationary growth phase was promoted, symplasmata formation and motility were inhibited in the late stationary growth phase and the colonization ability and growth-promoting effect of YS19 on the host plant were also inhibited. This study discusses the indole regulatory pathways from the point of RNA post-transcriptional modification, thus enriching our knowledge of polyadenylation and expanding current research ideas of indole regulation.
-
-
-
Functional analysis of a biosynthetic cluster essential for production of 4-formylaminooxyvinylglycine, a germination-arrest factor from Pseudomonas fluorescens WH6
More LessRhizosphere-associated Pseudomonas fluorescens WH6 produces the germination-arrest factor 4-formylaminooxyvinylglycine (FVG). FVG has previously been shown to both arrest the germination of weedy grasses and inhibit the growth of the bacterial plant pathogen Erwinia amylovora. Very little is known about the mechanism by which FVG is produced. Although a previous study identified a region of the genome that may be involved in FVG biosynthesis, it has not yet been determined which genes within that region are sufficient and necessary for FVG production. In the current study, we explored the role of each of the putative genes encoded in that region by constructing deletion mutations. Mutant strains were assayed for their ability to produce FVG with a combination of biological assays and TLC analyses. This work defined the core FVG biosynthetic gene cluster and revealed several interesting characteristics of FVG production. We determined that FVG biosynthesis requires two small ORFs of less than 150 nucleotides and that multiple transporters have overlapping but distinct functionality. In addition, two genes in the centre of the biosynthetic gene cluster are not required for FVG production, suggesting that additional products may be produced from the cluster. Transcriptional analysis indicated that at least three active promoters play a role in the expression of genes within this cluster. The results of this study enrich our knowledge regarding the diversity of mechanisms by which bacteria produce non-proteinogenic amino acids like vinylglycines.
-
-
-
The function of the three phosphoribosyl pyrophosphate synthetase (Prs) genes in hyphal growth and conidiation in Aspergillus nidulans
More LessPhosphoribosyl pyrophosphate synthetase, which is encoded by the Prs gene, catalyses the reaction of ribose-5-phosphate and adenine ribonucleotide triphosphate (ATP) and has central importance in cellular metabolism. However, knowledge about how Prs family members function and contribute to total 5-phosphoribosyl-α-1-pyrophosphate (PRPP) synthetase activity is limited. In this study, we identified that the filamentous fungus Aspergillus nidulans genome contains three PRPP synthase-homologous genes (AnprsA, AnprsB and AnprsC), among which AnprsB and AnprsC but not AnprsA are auxotrophic genes. Transcriptional expression profiles revealed that the mRNA levels of AnprsA, AnprsB and Anprs C are dynamic during germination, hyphal growth and sporulation and that they all showed abundant expression during the vigorous hyphal growth time point. Inhibiting the expression of AnprsB or AnprsC in conditional strains produced more effects on the total PRPP synthetase activity than did inhibiting AnprsA, thus indicating that different AnPrs proteins are unequal in their contributions to Prs enzyme activity. In addition, the constitutive overexpression of AnprsA or AnprsC could significantly rescue the defective phenotype of the AnprsB-absent strain, suggesting that the function of AnprsB is not a specific consequence of this auxotrophic gene but instead comes from the contribution of Prs proteins to PRPP synthetase activity.
-
- Regulation
-
-
-
Identification and characterization of chemosensors for d-malate, unnatural enantiomer of malate, in Ralstonia pseudosolanacearum
More LessRalstonia pseudosolanacearum Ps29 is attracted by nonmetabolizable d-malate, an unnatural enantiomer. Screening of a complete collection of single-mcp-gene deletion mutants of Ps29 revealed that the RSc1156 homologue is a chemosensor for d-malate. An RSc1156 homologue deletion mutant of Ps29 showed decreased but significant responses to d-malate, suggesting the existence of another d-malate chemosensor. McpM previously had been identified as a chemosensor for l-malate. We constructed an RSc1156 homologue mcpM double deletion mutant and noted that this mutant failed to respond to d-malate; thus, the RSc1156 homologue and McpM are the major chemosensors for d-malate in this organism. To further characterize the ligand specificities of the RSc1156 homologue and McpM, we constructed a Ps29 derivative (designated K18) harbouring deletions in 18 individual mcp genes, including mcpM and RSc1156. K18 harbouring the RSc1156 homologue responded strongly to l-tartrate and d-malate and moderately to d-tartrate, but not to l-malate or succinate. K18 harbouring mcpM responded strongly to l-malate and d-tartrate and moderately to succinate, fumarate and d-malate. Ps29 utilizes l-malate and l-tartrate, but not d-malate. We therefore concluded that l-tartrate and l-malate are natural ligands of the RSc1156 homologue and McpM, respectively, and that chemotaxis toward d-malate is a fortuitous response by the RSc1156 homologue and McpM in Ps29. We propose re-designation of the RSc1156 homologue as McpT. In tomato plant infection assays, the mcpT deletion mutant of highly virulent R. pseudosolanacearum MAFF106611 was as infectious as wild-type MAFF106611, suggesting that McpT-mediated chemotaxis does not play an important role in tomato plant infection.
-
-
-
-
Cross-regulation between two common ancestral response regulators, HprR and CusR, in Escherichia coli
More LessThe uncharacterized two-component system YedVW of Escherichia coli is involved in stress response to hydrogen peroxide. To identify the H2O2-sensing role of YedV, a set of single Cys-to-Ala substitution mutants were constructed. One particular mutant with C165A substitution in the membrane domain rendered YedV inactive in H2O2-dependent transcription of its regulatory target hiuH. We then proposed to rename YedVW to HprSR (hydrogen peroxide response sensor/regulator). One unique characteristic of HprR is the overlapping of its recognition sequence with that of the Cu(II)-response two-component system regulator CusR. Towards understanding this unique regulation system, in this study we analysed the interplay between HprR and CusR with respect to transcription of hiuH, a regulatory target of HprR, and cusC, a target of CusR. Under low protein concentrations in vitro and in vivo, two regulators recognize and transcribe both hiuH and cusC promoters, albeit at different efficiency, apparently in a collaborative fashion. This is a new type of transcription regulation of the common target genes in response to different external signals. Upon increase in protein concentrations, however, HprR and CusR compete with each other in transcription of the common targets, thereby exhibiting a competitive interplay.
-
-
-
CRISPR-Cas system presents multiple transcriptional units including antisense RNAs that are expressed in minimal medium and upregulated by pH in Salmonella enterica serovar Typhi
The CRISPR-Cas system is involved in bacterial immunity, virulence, gene regulation, biofilm formation and sporulation. In Salmonella enterica serovar Typhi, this system consists of five transcriptional units including antisense RNAs. It was determined that these genetic elements are expressed in minimal medium and are up-regulated by pH. In addition, a transcriptional characterization of cas3 and ascse2-1 is included herein.
-
-
-
Identification of new regulatory genes involved in the pathogenic functions of the rice-pathogenic bacterium Burkholderia glumae
Burkholderia glumae is an emerging plant-pathogenic bacterium that causes disease in rice in several of the major rice-producing areas throughout the world. In the southern United States, B. glumae is the major causal agent of bacterial panicle blight of rice and has caused severe yield losses in recent decades. Despite its importance, few management options are available for diseases caused by B. glumae, and knowledge of how this pathogen causes disease is limited. In an effort to identify novel factors that contribute to the pathogenicity of B. glumae, random mutagenesis using the miniTn5gus transposon was performed on two strains of B. glumae. Resultant mutants were screened in the laboratory for altered phenotypes in various known or putative virulence factors, including toxoflavin, lipase and extracellular polysaccharides. Mutants that exhibited altered phenotypes compared to their parent strain were selected and subsequently characterized using a PCR-based method to identify the approximate location of the transposon insertion. Altogether, approximately 20 000 random mutants were screened and 51 different genes were identified as having potential involvement in the production of toxoflavin, lipase and/or extracellular polysaccharide. Especially, two regulatory genes, ntpR and tepR, encoding a LysR-type transcriptional regulator and a σ54-dependent response regulator, respectively, were discovered in this study as new negative regulatory factors for the production of toxoflavin, the major phytotoxin synthesized by B. glumae and involved in bacterial pathogenesis.
-
-
-
Suppressor analysis of eepR mutant defects reveals coordinate regulation of secondary metabolites and serralysin biosynthesis by EepR and HexS
The EepR transcription factor positively regulates secondary metabolites and tissue-damaging metalloproteases. To gain insight into mechanisms by which EepR regulates pigment and co-regulated factors, genetic suppressor analysis was performed. Suppressor mutations that restored pigment to the non-pigmented ∆eepR mutant mapped to the hexS ORF. Mutation of hexS also restored haemolysis, swarming motility and protease production to the eepR mutant. HexS is a known direct and negative regulator of secondary metabolites in Serratia marcescens and is a LysR family regulator and an orthologue of LrhA. Here, we demonstrate that HexS directly controls eepR and the serralysin gene prtS. EepR was shown to directly regulate eepR expression but indirectly regulate hexS expression. Together, these data indicate that EepR and HexS oppose each other in controlling stationary phase-associated molecules and enzymes.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
