1887

Abstract

Ps29 is attracted by nonmetabolizable -malate, an unnatural enantiomer. Screening of a complete collection of single--gene deletion mutants of Ps29 revealed that the RSc1156 homologue is a chemosensor for -malate. An RSc1156 homologue deletion mutant of Ps29 showed decreased but significant responses to -malate, suggesting the existence of another -malate chemosensor. McpM previously had been identified as a chemosensor for -malate. We constructed an RSc1156 homologue double deletion mutant and noted that this mutant failed to respond to -malate; thus, the RSc1156 homologue and McpM are the major chemosensors for -malate in this organism. To further characterize the ligand specificities of the RSc1156 homologue and McpM, we constructed a Ps29 derivative (designated K18) harbouring deletions in 18 individual genes, including and RSc1156. K18 harbouring the RSc1156 homologue responded strongly to -tartrate and -malate and moderately to -tartrate, but not to -malate or succinate. K18 harbouring responded strongly to -malate and -tartrate and moderately to succinate, fumarate and -malate. Ps29 utilizes -malate and -tartrate, but not -malate. We therefore concluded that -tartrate and -malate are natural ligands of the RSc1156 homologue and McpM, respectively, and that chemotaxis toward -malate is a fortuitous response by the RSc1156 homologue and McpM in Ps29. We propose re-designation of the RSc1156 homologue as McpT. In tomato plant infection assays, the deletion mutant of highly virulent MAFF106611 was as infectious as wild-type MAFF106611, suggesting that McpT-mediated chemotaxis does not play an important role in tomato plant infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000408
2017-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/2/233.html?itemId=/content/journal/micro/10.1099/mic.0.000408&mimeType=html&fmt=ahah

References

  1. Adler J. Chemotaxis in bacteria. Science 1966; 153:708–716 [View Article][PubMed]
    [Google Scholar]
  2. Kato J, Ito A, Nikata T, Ohtake H. Phosphate taxis in Pseudomonas aeruginosa. J Bacteriol 1992; 174:5149–5151 [View Article][PubMed]
    [Google Scholar]
  3. Moench TT, Konetzka WA. Chemotaxis in Pseudomonas aeruginosa. J Bacteriol 1978; 133:427–429[PubMed]
    [Google Scholar]
  4. Moulton RC, Montie TC. Chemotaxis by Pseudomonas aeruginosa. J Bacteriol 1979; 137:274–280[PubMed]
    [Google Scholar]
  5. Taguchi K, Fukutomi H, Kuroda A, Kato J, Ohtake H. Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiology 1997; 143:3223–3229 [View Article][PubMed]
    [Google Scholar]
  6. Chet I, Mitchell R. Ecological aspects of microbial chemotactic behavior. Annu Rev Microbiol 1976; 30:221–239 [View Article][PubMed]
    [Google Scholar]
  7. Porter SL, Wadhams GH, Armitage JP. Signal processing in complex chemotaxis pathways. Nat Rev Microbiol 2011; 9:153–165 [View Article][PubMed]
    [Google Scholar]
  8. Stock JB, Surette MG. Chemotaxis. In Neidhardt FC. editor Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. Washington, DC: ASM Press; 1996 pp. 1103–1129
    [Google Scholar]
  9. Hayward AC. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 1991; 29:65–87 [View Article][PubMed]
    [Google Scholar]
  10. Hayward AC. Ralstonia solanacearum In Lederberg J. editor Encyclopedia of Microbiology, 2nd ed. vol. 4 San Diego, CA: Academic Press; 2000 pp. 32–42
    [Google Scholar]
  11. Genin S. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol 2010; 187:920–928 [View Article][PubMed]
    [Google Scholar]
  12. Fegan M, Prior P. Diverse members of the Ralstonia solanacearum species complex cause bacterial wilts of banana. Australas Plant Pathol 2006; 35:93–101 [View Article]
    [Google Scholar]
  13. Gillings MR, Fahy P. Genomic fingerprinting: towards a unified view of the Pseudomonas solanacearum species complex. In Hayward AC, Hartman GL. (editors) Bacterial Wilt: the Disease and its Causative Agent, Pseudomonas solanacearum Wallingford, UK: CAB International; 1994 pp 95–112
    [Google Scholar]
  14. Guidot A, Prior P, Schoenfeld J, Carrère S, Genin S et al. Genomic structure and phylogeny of the plant pathogen Ralstonia solanacearum inferred from gene distribution analysis. J Bacteriol 2007; 189:377–387 [View Article][PubMed]
    [Google Scholar]
  15. Safni I, Cleenwerck I, de Vos P, Fegan M, Sly L et al. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int J Syst Evol Microbiol 2014; 64:3087–3103 [View Article][PubMed]
    [Google Scholar]
  16. Hida A, Oku S, Kawasaki T, Nakashimada Y, Tajima T et al. Identification of the mcpA and mcpM genes, encoding methyl-accepting proteins involved in amino acid and l-malate chemotaxis, and involvement of McpM-mediated chemotaxis in plant infection by Ralstonia pseudosolanacearum (formerly Ralstonia solanacearum phylotypes I and III). Appl Environ Microbiol 2015; 81:7420–7430 [View Article][PubMed]
    [Google Scholar]
  17. Yao J, Allen C. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 2006; 188:3697–3708 [View Article][PubMed]
    [Google Scholar]
  18. Stern JR, Hegre CS. Inducible d-malic enzyme in Escherichia coli. Nature 1966; 212:1611–1612 [View Article][PubMed]
    [Google Scholar]
  19. Giffhorn F, Kuhn A. Purification and characterization of a bifunctional l-(+)-tartrate dehydrogenase-d-(+)-malate dehydrogenase (decarboxylating) from Rhodopseudomonas sphaeroides Y. J Bacteriol 1983; 155:281–290[PubMed]
    [Google Scholar]
  20. Knichel W, Radler F. d-Malic enzyme of Pseudomonas fluorescens. Eur J Biochem 1982; 123:547–552 [View Article][PubMed]
    [Google Scholar]
  21. Nishimori E, Kita-Tsukamoto K, Wakabayashi H. Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int J Syst Evol Microbiol 2000; 50:83–89 [View Article][PubMed]
    [Google Scholar]
  22. Yamada T, Kawasaki T, Nagata S, Fujiwara A, Usami S et al. New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology 2007; 153:2630–2639 [View Article][PubMed]
    [Google Scholar]
  23. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  24. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1983; 1:784–791 [View Article]
    [Google Scholar]
  25. Hendrick CA, Sequeira L. Lipopolysaccharide-defective mutants of the wilt pathogen Pseudomonas solanacearum. Appl Environ Microbiol 1984; 48:94–101[PubMed]
    [Google Scholar]
  26. Nikata T, Sumida K, Kato J, Ohtake H. Rapid method for analyzing bacterial behavioral responses to chemical stimuli. Appl Environ Microbiol 1992; 58:2250–2254[PubMed]
    [Google Scholar]
  27. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994; 145:69–73 [View Article][PubMed]
    [Google Scholar]
  28. Hoffland E, Findenegg GR, Nelemans JA. Solubilization of rock phosphate by rape. Plant Soil 1989; 113:161–165 [View Article]
    [Google Scholar]
  29. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S et al. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 2002; 415:497–502 [View Article][PubMed]
    [Google Scholar]
  30. Buch ML. Bibliography of Organic Acids in Higher Plants Washington, DC: Agricultural Research Service, US Department of Agriculture; 1960
    [Google Scholar]
  31. Falke JJ, Hazelbauer GL. Transmembrane signaling in bacterial chemoreceptors. Trends Biochem Sci 2001; 26:257–265 [View Article][PubMed]
    [Google Scholar]
  32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  33. Lacal J, García-Fontana C, Muñoz-Martínez F, Ramos JL, Krell T. Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environ Microbiol 2010; 12:2873–2884 [View Article][PubMed]
    [Google Scholar]
  34. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015; 10:845–858 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000408
Loading
/content/journal/micro/10.1099/mic.0.000408
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error