1887

Abstract

In this study, the intestinal microbial proteome of children with established type 1 diabetes (T1D) was compared with the proteome of healthy children (Control) with the aim to identify differences in the activity of the intestinal microbiota that not only will contribute to a deeper knowledge of the functionality of the gut in these children but also may provide new approaches to improve the control of the disease. Faecal protein extracts collected from three T1D children (aged 9.3±0.6 years) and three Control children (aged 9.3±1.5 years) were analysed using a combination of 2D gel electrophoresis and spectral counting. The results evidenced markedly differences between the intestinal proteome of T1D children and the Control. The T1D microbial intestinal proteome was enriched with proteins of clostridial cluster XVa and cluster IV and . In contrast, the Control proteome was enriched with bifidobacterial proteins. In both groups, proteins with moonlight function were observed. Human proteins also distinguished the two groups with T1D children depleted in exocrine pancreatic enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000412
2017-02-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/2/161.html?itemId=/content/journal/micro/10.1099/mic.0.000412&mimeType=html&fmt=ahah

References

  1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464:59–65 [View Article][PubMed]
    [Google Scholar]
  2. de Vos WM, de Vos EA. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev 2012; 70:S45–S56 [View Article][PubMed]
    [Google Scholar]
  3. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 2011; 6:e25792 [View Article][PubMed]
    [Google Scholar]
  4. Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 2011; 5:82–91 [View Article][PubMed]
    [Google Scholar]
  5. de Goffau MC, Luopajärvi K, Knip M, Ilonen J, Ruohtula T et al. Fecal Microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 2013; 62:1238–1244 [View Article][PubMed]
    [Google Scholar]
  6. Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 2015; 17:260–273 [View Article][PubMed]
    [Google Scholar]
  7. de Filippo C, Cavalieri D, di Paola M, Ramazzotti M, Poullet JB et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010; 107:14691–1496 [View Article][PubMed]
    [Google Scholar]
  8. Fallani M, Young D, Scott J, Norin E, Amarri S et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 2010; 51:77–84 [View Article][PubMed]
    [Google Scholar]
  9. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG et al. Human gut microbiome viewed across age and geography. Nature 2012; 486:222–227 [View Article][PubMed]
    [Google Scholar]
  10. La-Ongkham O, Nakphaichit M, Leelavatcharamas V, Keawsompong S, Nitisinprasert S. Distinct gut microbiota of healthy children from two different geographic regions of Thailand. Arch Microbiol 2015; 197:561–573 [View Article][PubMed]
    [Google Scholar]
  11. Kemppainen KM, Ardissone AN, Davis-Richardson AG, Fagen JR, Gano KA et al. Early childhood gut microbiomes show strong geographic differences among subjects at high risk for type 1 diabetes. Diabetes Care 2015; 38:329–332 [View Article][PubMed]
    [Google Scholar]
  12. Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 2013; 11:46 [View Article][PubMed]
    [Google Scholar]
  13. Soyucen E, Gulcan A, Aktuglu-Zeybek AC, Onal H, Kiykim E et al. Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatr Int 2014; 56:336–343 [View Article][PubMed]
    [Google Scholar]
  14. Kolmeder CA, de Vos WM. Metaproteomics of our microbiome – developing insight in function and activity in man and model systems. J Proteomics 2014; 97:3–16 [View Article][PubMed]
    [Google Scholar]
  15. Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW et al. Application of metagenomics in the human gut microbiome. World J Gastroenterol 2015; 21:803–814 [View Article][PubMed]
    [Google Scholar]
  16. Klaassens ES, de Vos WM, Vaughan EE. Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl Environ Microbiol 2007; 73:1388–1392 [View Article][PubMed]
    [Google Scholar]
  17. Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J 2009; 3:179–189 [View Article][PubMed]
    [Google Scholar]
  18. Li X, LeBlanc J, Truong A, Vuthoori R, Chen SS et al. A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface. PLoS One 2011; 6:e26542 [View Article][PubMed]
    [Google Scholar]
  19. Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF et al. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease. PLoS One 2012; 7:e49138 [View Article][PubMed]
    [Google Scholar]
  20. Kolmeder CA, de Been M, Nikkilä J, Ritamo I, Mättö J et al. Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS One 2012; 7:e29913 [View Article][PubMed]
    [Google Scholar]
  21. Wilmes P, Bond PL. The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 2004; 6:911–920 [View Article][PubMed]
    [Google Scholar]
  22. Alpert C, Scheel J, Engst W, Loh G, Blaut M. Adaptation of protein expression by Escherichia coli in the gastrointestinal tract of gnotobiotic mice. Environ Microbiol 2009; 11:751–761 [View Article][PubMed]
    [Google Scholar]
  23. Speicher KD, Kolbas O, Harper S, Speicher DW. Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biomol Tech 2000; 11:74–86[PubMed]
    [Google Scholar]
  24. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312:1355–1359 [View Article][PubMed]
    [Google Scholar]
  25. Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 2010; 139:1844–1854 [View Article][PubMed]
    [Google Scholar]
  26. Searle BC. Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics 2010; 10:1265–1269 [View Article][PubMed]
    [Google Scholar]
  27. Oneill K, Klimke W, Tatusova T. Protein clusters: a collection of proteins grouped by sequence similarity and function. Bethesda, MD: National Center for Biotechnology Information; 2007 http://www.ncbi.nlm.nih.gov/books/NBK3797
  28. Koskinen VR, Emery PA, Creasy DM, Cottrell JS. Hierarchical clustering of shotgun proteomics data. Mol Cell Proteomics 2011; 10:M110.003822 [View Article][PubMed]
    [Google Scholar]
  29. Xiong W, Abraham PE, Li Z, Pan C, Hettich RL. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. Proteomics 2015; 15:3424–3438 [View Article][PubMed]
    [Google Scholar]
  30. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43:D447–D452 [View Article][PubMed]
    [Google Scholar]
  31. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13:2498–2504 [View Article][PubMed]
    [Google Scholar]
  32. Penders J, Vink C, Driessen C, London N, Thijs C et al. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett 2005; 243:141–147 [View Article][PubMed]
    [Google Scholar]
  33. Liu C, Song Y, McTeague M, Vu AW, Wexler H et al. Rapid identification of the species of the Bacteroides fragilis group by multiplex PCR assays using group- and species-specific primers. FEMS Microbiol Lett 2003; 222:9–16[PubMed] [CrossRef]
    [Google Scholar]
  34. Tanca A, Palomba A, Pisanu S, Addis MF, Uzzau S. Enrichment or depletion? The impact of stool pretreatment on metaproteomic characterization of the human gut microbiota. Proteomics 2015; 15:3474–3485 [View Article][PubMed]
    [Google Scholar]
  35. Piehowski PD, Petyuk VA, Orton DJ, Xie F, Ramirez-Restrepo M et al. Sources of technical variability in quantitative LC-MS proteomics: human brain tissue sample analysis. J Proteom Res 2013; 12:2128–2137 [CrossRef]
    [Google Scholar]
  36. Gan CS, Chong PK, Pham TK, Wright PC. Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J Proteome Res 2007; 6:821–827 [View Article][PubMed]
    [Google Scholar]
  37. Tanca A, Palomba A, Deligios M, Cubeddu T, Fraumene C et al. Evaluating the impact of different sequence databases on metaproteome analysis: insights from a lab-assembled microbial mixture. PLoS One 2013; 8:e82981 [View Article][PubMed]
    [Google Scholar]
  38. Tanca A, Palomba A, Fraumene C, Pagnozzi D, Manghina V et al. The impact of sequence database choice on metaproteomic results in gut microbiota studies. Microbiome 2016; 4:51 [View Article][PubMed]
    [Google Scholar]
  39. Zhang X, Ning Z, Mayne J, Moore JI, Li J et al. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota. Microbiome 2016; 4:31 [View Article][PubMed]
    [Google Scholar]
  40. Kim JH, An HJ, Garrido D, German JB, Lebrilla CB et al. Proteomic analysis of Bifidobacterium longum subsp. infantis reveals the metabolic insight on consumption of prebiotics and host glycans. PLoS One 2013; 8:e57535 [View Article][PubMed]
    [Google Scholar]
  41. Melo J, Schrama D, Hussey S, Andrew PW, Faleiro ML. Listeria monocytogenes dairy isolates show a different proteome response to sequential exposure to gastric and intestinal fluids. Int J Food Microbiol 2013; 163:51–63 [View Article][PubMed]
    [Google Scholar]
  42. Sánchez B, Champomier-Vergès MC, Anglade P, Baraige F, de Los Reyes-Gavilán CG et al. Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J Bacteriol 2005; 187:5799–5808 [View Article][PubMed]
    [Google Scholar]
  43. Candela M, Bergmann S, Vici M, Vitali B, Turroni S et al. Binding of human plasminogen to Bifidobacterium. J Bacteriol 2007; 189:5929–5936 [View Article][PubMed]
    [Google Scholar]
  44. Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M et al. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun 2004; 72:2160–2169[PubMed] [CrossRef]
    [Google Scholar]
  45. Wei X, Yan X, Chen X, Yang Z, Li H et al. Proteomic analysis of the interaction of Bifidobacterium longum NCC2705 with the intestine cells Caco-2 and identification of plasminogen receptors. J Proteomics 2014; 108:89–98 [View Article][PubMed]
    [Google Scholar]
  46. Lee K, Lee HG, Choi YJ. Proteomic analysis of the effect of bile salts on the intestinal and probiotic bacterium Lactobacillus reuteri. J Biotechnol 2008; 137:14–19 [View Article][PubMed]
    [Google Scholar]
  47. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 2009; 294:1–8 [View Article][PubMed]
    [Google Scholar]
  48. Debyser G, Mesuere B, Clement L, Van de Weygaert J, Van Hecke P et al. Faecal proteomics: a tool to investigate dysbiosis and inflammation in patients with cystic fibrosis. J Cyst Fibro 2016; 15:242–250 [CrossRef]
    [Google Scholar]
  49. Duncan SH, Hold GL, Harmsen HJ, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 2002; 52:2141–2146 [View Article][PubMed]
    [Google Scholar]
  50. Benus RF, van der Werf TS, Welling GW, Judd PA, Taylor MA et al. Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects. Br J Nutr 2010; 104:693–700 [View Article][PubMed]
    [Google Scholar]
  51. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011; 5:220–230 [View Article][PubMed]
    [Google Scholar]
  52. Charon MH, Volbeda A, Chabriere E, Pieulle L, Fontecilla-Camps JC. Structure and electron transfer mechanism of pyruvate:ferredoxin oxidoreductase. Curr Opin Struct Biol 1999; 9:663–669[PubMed] [CrossRef]
    [Google Scholar]
  53. Khan MT, Duncan SH, Stams AJ, van Dijl JM, Flint HJ et al. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J 2012; 6:1578–1585 [View Article][PubMed]
    [Google Scholar]
  54. Whelan K, Judd PA, Preedy VR, Simmering R, Jann A et al. Fructooligosaccharides and fiber partially prevent the alterations in fecal microbiota and short-chain fatty acid concentrations caused by standard enteral formula in healthy humans. J Nutr 2005; 135:1896–1902[PubMed]
    [Google Scholar]
  55. El-Semman IE, Karlsson FH, Shoaie S, Nookaew I, Soliman TH et al. Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst Biol 2014; 8:41 [View Article][PubMed]
    [Google Scholar]
  56. Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen HJ et al. Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J Bacteriol 2014; 196:3289–3302 [View Article][PubMed]
    [Google Scholar]
  57. Miranda RL, Conway T, Leatham MP, Chang DE, Norris WE et al. Glycolytic and gluconeogenic growth of Escherichia coli O157:H7 (EDL933) and E. coli K-12 (MG1655) in the mouse intestine. Infect Immun 2004; 72:1666–1676[PubMed] [CrossRef]
    [Google Scholar]
  58. Smart C, Aslander-van Vliet E, Waldron S. Nutritional management in children and adolescents with diabetes. Pediatr Diabetes 2009; 10:100–117 [View Article][PubMed]
    [Google Scholar]
  59. Kengen SM, Stams AM. Formation of l-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch Microbiol 1994; 161:168–175 [CrossRef]
    [Google Scholar]
  60. Santero E, Canosa I, Govantes F, Hervás AB. Glutamate dehydrogenases: enzymology, physiological role and biotechnological relevance. In Canuto RA. editor Dehydrogenases Rijeka, Croatia: InTech; 2012 http://www.intechopen.com/books/dehydrogenases
    [Google Scholar]
  61. Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 2004; 70:5810–5817 [View Article][PubMed]
    [Google Scholar]
  62. Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 2014; 5:e00889-14 [View Article][PubMed]
    [Google Scholar]
  63. Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci USA 2009; 106:5859–5864 [View Article][PubMed]
    [Google Scholar]
  64. Culligan EP, Marchesi JR, Hill C, Sleator RD. Mining the human gut microbiome for novel stress resistance genes. Gut Microbes 2012; 3:394–397 [View Article][PubMed]
    [Google Scholar]
  65. Smith EA, Macfarlane GT. Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 1997; 3:327–337 [View Article][PubMed]
    [Google Scholar]
  66. Davis-Richardson AG, Ardissone AN, Dias R, Simell V, Leonard MT et al. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol 2014; 5:678 [View Article][PubMed]
    [Google Scholar]
  67. Davis-Richardson AG, Triplett EW. A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes. Diabetologia 2015; 58:1386–1393 [View Article][PubMed]
    [Google Scholar]
  68. Hennequin C, Porcheray F, Waligora-Dupriet A, Collignon A, Barc M et al. GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 2001; 147:87–96 [View Article][PubMed]
    [Google Scholar]
  69. Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnicola D et al. GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 2006; 74:425–434 [View Article][PubMed]
    [Google Scholar]
  70. Candela M, Centanni M, Fiori J, Biagi E, Turroni S et al. DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiology 2010; 156:1609–1618 [View Article][PubMed]
    [Google Scholar]
  71. Kavanaugh DW, O'Callaghan J, Buttó LF, Slattery H, Lane J et al. Exposure of Bifidobacterium longum subsp. infantis to milk oligosaccharides increases adhesion to epithelial cells and induces a substantial transcriptional response. PLoS One 2013; 8:e67224 [View Article][PubMed]
    [Google Scholar]
  72. Kainulainen V, Korhonen TK. Dancing to another tune – adhesive moonlighting proteins in bacteria. Biology 2014; 3:178–204 [View Article][PubMed]
    [Google Scholar]
  73. Kemppainen KM, Ardissone AN, Davis-Richardson AG, Fagen JR, Gano KA et al. Early childhood gut microbiomes show strong geographic differences among subjects at high risk for type 1 diabetes. Diabetes Care 2015; 38:329–332 [View Article][PubMed]
    [Google Scholar]
  74. Endesfelder D, Zu Castell W, Ardissone A, Davis-Richardson AG, Achenbach P et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 2014; 63:2006–2014 [View Article][PubMed]
    [Google Scholar]
  75. Canaway S, Phillips I, Betts P. Pancreatic exocrine insufficiency and type 1 diabetes mellitus. Br J Nurs 2000; 9:2030–2032 [View Article][PubMed]
    [Google Scholar]
  76. Laass MW, Henker J, Thamm K, Neumeister V, Kuhlisch E. Exocrine pancreatic insufficiency and its consequences on physical development and metabolism in children and adolescents with type 1 diabetes mellitus. Eur J Pediatr 2004; 163:681–682 [View Article][PubMed]
    [Google Scholar]
  77. Icks A, Haastert B, Giani G, Rathmann W. Low fecal elastase-1 in type I diabetes mellitus. Z Gastroenterol 2001; 39:823–830 [View Article][PubMed]
    [Google Scholar]
  78. Larger E, Philippe MF, Barbot-Trystram L, Radu A, Rotariu M et al. Pancreatic exocrine function in patients with diabetes. Diabet Med 2012; 29:1047–1054 [View Article][PubMed]
    [Google Scholar]
  79. Vujasinovic M, Zaletel J, Tepes B, Popic B, Makuc J et al. Low prevalence of exocrine pancreatic insufficiency in patients with diabetes mellitus. Pancreatology 2013; 13:343–346 [View Article][PubMed]
    [Google Scholar]
  80. Bergstrom KS, Kissoon-Singh V, Gibson DL, Ma C, Montero M et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 2010; 6:e1000902 [View Article][PubMed]
    [Google Scholar]
  81. Hasnain SZ, Wang H, Ghia JE, Haq N, Deng Y et al. Mucin gene deficiency in mice impairs host resistance to an enteric parasitic infection. Gastroenterology 2010; 138:1763–1771 [View Article][PubMed]
    [Google Scholar]
  82. Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 2011; 108:4659–4665 [View Article][PubMed]
    [Google Scholar]
  83. Andrianifahanana M, Moniaux N, Batra SK. Regulation of mucin expression: mechanistic aspects and implications for cancer and inflammatory diseases. Biochim Biophys Acta 2006; 1765:189–222 [View Article][PubMed]
    [Google Scholar]
  84. Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 2001; 73:1131S–1141S[PubMed]
    [Google Scholar]
  85. Iwashita J, Sato Y, Sugaya H, Takahashi N, Sasaki H et al. mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogen-activated protein kinase pathway in human colon cancer cells. Immunol Cell Biol 2003; 81:275–282 [View Article][PubMed]
    [Google Scholar]
  86. Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 1999; 276:G941–G950[PubMed]
    [Google Scholar]
  87. Theodoropoulos G, Carraway KL. Molecular signaling in the regulation of mucins. J Cell Biochem 2007; 102:1103–1116 [View Article][PubMed]
    [Google Scholar]
  88. Willemsen LEM, Koetsier MA, van Deventer SJH, van Tol EAF. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts. Gut 2003; 52:1442–1447[PubMed] [CrossRef]
    [Google Scholar]
  89. Lottaz D, Hahn D, Müller S, Müller C, Sterchi EE. Secretion of human meprin from intestinal epithelial cells depends on differential expression of the α and β subunits. Eur J Biochem 1999; 259:496–504[PubMed] [CrossRef]
    [Google Scholar]
  90. Bertenshaw GP, Turk BE, Hubbard SJ, Matters GL, Bylander JE et al. Marked differences between metalloproteases meprin A and B in substrate and peptide bond specificity. J Biol Chem 2001; 276:13248–13255 [View Article][PubMed]
    [Google Scholar]
  91. Kruse MN, Becker C, Lottaz D, Köhler D, Yiallouros I et al. Human meprin alpha and beta homo-oligomers: cleavage of basement membrane proteins and sensitivity to metalloprotease inhibitors. Biochem J 2004; 378:383–389 [View Article][PubMed]
    [Google Scholar]
  92. Hirano M, Ma BY, Kawasaki N, Okimura K, Baba M et al. Mannan-binding protein blocks the activation of metalloproteases meprin α and β. J Immunol 2005; 175:3177–3185[PubMed] [CrossRef]
    [Google Scholar]
  93. Banerjee S, Oneda B, Yap LM, Jewell DP, Matters GL et al. MEP1A allele for meprin A metalloprotease is a susceptibility gene for inflammatory bowel disease. Mucosal Immunol 2009; 2:220–231 [View Article][PubMed]
    [Google Scholar]
  94. Estaki M, DeCoffe D, Gibson DL. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity. World J Gastroenterol 2014; 20:15650–15656 [View Article][PubMed]
    [Google Scholar]
  95. Lallès JP. Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev 2014; 72:82–94 [View Article][PubMed]
    [Google Scholar]
  96. Míguez I, Mariño G, Rodríguez B, Taboada C. Effects of dietary l-arginine supplementation on serum lipids and intestinal enzyme activities in diabetic rats. J Physiol Biochem 2004; 60:31–37[PubMed] [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.000412
Loading
/content/journal/micro/10.1099/mic.0.000412
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error