1887

Abstract

The phylum Actinobacteria, which comprises a great variety of Gram-positive bacteria with a high G+C content in their genomes, is known for its large production of bioactive compounds, including those with antimicrobial activity. Among the antimicrobials, bacteriocins, ribosomally synthesized peptides, represent an important arsenal of potential new drugs to face the increasing prevalence of resistance to antibiotics among microbial pathogens. The actinobacterial bacteriocins form a heterogeneous group of substances that is difficult to adapt to most proposed classification schemes. However, recent updates have accommodated efficiently the diversity of bacteriocins produced by this phylum. Among the bacteriocins, the lantibiotics represent a source of new antimicrobials to control infections caused mainly by Gram-positive bacteria and with a low propensity for resistance development. Moreover, some of these compounds have additional biological properties, exhibiting activity against viruses and tumour cells and having also potential to be used in blood pressure or inflammation control and in pain relief. Thus, lantibiotics already described in Actinobacteria exhibit potential practical applications in medical settings, food industry and agriculture, with examples at different stages of pre-clinical and clinical trials.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000397
2017-03-09
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/2/109.html?itemId=/content/journal/micro/10.1099/mic.0.000397&mimeType=html&fmt=ahah

References

  1. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 2016;80:1–43 [CrossRef][PubMed]
    [Google Scholar]
  2. Embley TM, Stackebrandt E. The molecular phylogeny and systematics of the Actinomycetes. Annu Rev Microbiol 1994;48:257–289 [CrossRef][PubMed]
    [Google Scholar]
  3. Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012;76:66–112 [CrossRef][PubMed]
    [Google Scholar]
  4. Nett M, Ikeda H, Moore BS. Genomic basis for natural product biosynthetic diversity in the Actinomycetes. Nat Prod Rep 2009;26:1362–1384 [CrossRef][PubMed]
    [Google Scholar]
  5. Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 2012;65:385–395 [CrossRef][PubMed]
    [Google Scholar]
  6. Baltz RH. Antimicrobials from Actinomycetes: back to the future. Microbiol 2007;2:125–131
    [Google Scholar]
  7. Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 2016;100:2939–2951 [CrossRef][PubMed]
    [Google Scholar]
  8. Rea MC, Ross RP, Cotter PD, Hill C. Classification of bacteriocins from Gram-positive bacteria. In: Drider D, Rebuffat R. (editors) Prokaryotic Antimicrobial Peptides New York: Springer; 2011; pp29–74[CrossRef]
    [Google Scholar]
  9. van Belkum MJ, Martin-Visscher LA, Vederas JC. Structure and genetics of circular bacteriocins. Trends Microbiol 2011;19:411–418 [CrossRef][PubMed]
    [Google Scholar]
  10. Bierbaum G, Sahl H-G. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 2009;10:2–18[PubMed][CrossRef]
    [Google Scholar]
  11. Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR. The diversity of bacteriocins in gram positive bacteria. In Riley MA, Chavan MA. (editors) Bacteriocins: Ecology and Evolution New York: Springer; 2007; pp45–83[CrossRef]
    [Google Scholar]
  12. Nissen-Meyer J, Rogne P, Oppegård C, Haugen HS, Kristiansen PE. Structure–function relationships of the non-lanthionine- containing peptide (class II) bacteriocins produced by Gram-positive bacteria. Curr Pharm Biotechnol 2009;10:19–37[PubMed][CrossRef]
    [Google Scholar]
  13. Holtsmark I, Mantzilas D, Eijsink VGH, Brurberg MB. Purification, characterization, and gene sequence of michiganin A, an actagardine-like lantibiotic produced by the tomato pathogen Clavibacter michiganensis subsp. michiganensis. Appl Environ Microbiol 2006;72:5814–5821 [CrossRef][PubMed]
    [Google Scholar]
  14. Aminake MN, Schoof S, Sologub L, Leubner M, Kirschner M et al. Thiostrepton and derivatives exhibit antimalarial and gametocytocidal activity by dually targeting parasite proteasome and apicoplast. Antimicrob Agents Chemother 2011;55:1338–1348 [CrossRef][PubMed]
    [Google Scholar]
  15. Castiglione F, Lazzarini A, Carrano L, Corti E, Ciciliato I et al. Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem Biol 2008;15:22–31 [CrossRef][PubMed]
    [Google Scholar]
  16. Férir G, Petrova MI, Andrei G, Huskens D, Hoorelbeke B et al. The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One 2013;8:e64010 [CrossRef][PubMed]
    [Google Scholar]
  17. Naruse N, Tenmyo O, Tomita K, Konishi M, Miyaki T et al. Lanthiopeptin, a new peptide antibiotic. Production, isolation and properties of lanthiopeptin. J Antibiot (Tokyo) 1989;42:837–845 [CrossRef][PubMed]
    [Google Scholar]
  18. Richard AS, Zhang A, Park SJ, Farzan M, Zong M et al. Virion-associated phosphatidylethanolamine promotes TIM1-mediated infection by Ebola, dengue, and West Nile viruses. Proc Natl Acad Sci USA 2015;112:14682–14687 [CrossRef][PubMed]
    [Google Scholar]
  19. Cotter PD, Hill C, Ross RP. Bacterial lantibiotics: strategies to improve therapeutic potential. Curr Protein Pept Sci 2005;6:61–75[PubMed][CrossRef]
    [Google Scholar]
  20. Fredenhagen A, Fendrich G, Märki F, Märki W, Gruner J et al. Duramycins B and C, two new lanthionine containing antibiotics as inhibitors of phospholipase A2. Structural revision of duramycin and cinnamycin. J Antibiot (Tokyo) 1990;43:1403–1412 [CrossRef][PubMed]
    [Google Scholar]
  21. Märki F, Hänni E, Fredenhagen A, van Oostrum J. Mode of action of the lanthionine-containing peptide antibiotics duramycin, duramycin B and C, and cinnamycin as indirect inhibitors of phospholipase A2. Biochem Pharmacol 1991;42:2027–2035[PubMed][CrossRef]
    [Google Scholar]
  22. Bhat UG, Halasi M, Gartel AL. Thiazole antibiotics target FoxM1 and induce apoptosis in human cancer cells. PLoS One 2009;4:1–7[CrossRef]
    [Google Scholar]
  23. Komiyama K, Otoguro K, Segawa T, Shiomi K, Yang H et al. A new antibiotic, cypemycin. Taxonomy, fermentation, isolation and biological characteristics. J Antibiot (Tokyo) 1993;46:1666–1671 [CrossRef][PubMed]
    [Google Scholar]
  24. Pandit B, Gartel AL. Thiazole antibiotic thiostrepton synergize with bortezomib to induce apoptosis in cancer cells. PLoS One 2011;6:2–7
    [Google Scholar]
  25. Iorio M, Sasso O, Maffioli SI, Bertorelli R, Monciardini P et al. A glycosylated, labionin-containing lanthipeptide with marked antinociceptive activity. Am Chem Soc Chem Biol 2014;9:398–404 [CrossRef][PubMed]
    [Google Scholar]
  26. Meindl K, Schmiederer T, Schneider K, Reicke A, Butz D et al. Labyrinthopeptins: a new class of carbacyclic lantibiotics. Angew Chemie - Int Edn 2010;49:1151–1154[CrossRef]
    [Google Scholar]
  27. Kido Y, Hamakado T, Yoshida T, Anno M, Motoki Y et al. Isolation and characterization of ancovenin, a new inhibitor of angiotensin I converting enzyme, produced by actinomycetes. J Antibiot (Tokyo) 1983;36:1295–1299 [CrossRef][PubMed]
    [Google Scholar]
  28. Moulin G, Cavalié P, Pellanne I, Chevance A, Laval A et al. A comparison of antimicrobial usage in human and veterinary medicine in France from 1999 to 2005. J Antimicrob Chemother 2008;62:617–625 [CrossRef][PubMed]
    [Google Scholar]
  29. Naicons 2016; Pipeline. www.naicons.com/products/pipeline.html Accessed 9/15/2016
  30. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013;30:108–160 [CrossRef][PubMed]
    [Google Scholar]
  31. Cotter PD, Ross RP, Hill C. Bacteriocins – a viable alternative to antibiotics?. Nat Rev Microbiol 2013;11:95–105 [CrossRef][PubMed]
    [Google Scholar]
  32. Jack RW, Tagg JR, Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev 1995;59:171–200[PubMed]
    [Google Scholar]
  33. Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 1993;12:39–85[PubMed][CrossRef]
    [Google Scholar]
  34. Dischinger J, Basi Chipalu S, Bierbaum G. Lantibiotics: promising candidates for future applications in health care. Int J Med Microbiol 2014;304:51–62 [CrossRef][PubMed]
    [Google Scholar]
  35. Kuipers A, Rink R, Moll GN. Genetics, biosynthesis, structure, and mode of action of lantibiotics. In Drider D, Rebuffat R. (editors) Prokaryotic Antimicrobial Peptides New York: Springer; 2011; pp147–169[CrossRef]
    [Google Scholar]
  36. Brötz H, Bierbaum G, Leopold K, Reynolds PE, Sahl H-G. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 1998;42:154–160[PubMed]
    [Google Scholar]
  37. Boakes S, Weiss WJ, Vinson M, Wadman S, Dawson MJ. Antibacterial activity of the novel semisynthetic lantibiotic NVB333 in vitro and in experimental infection models. J Antibiot 2016;69:850–857 [CrossRef][PubMed]
    [Google Scholar]
  38. van Heel AJ, Montalban-Lopez M, Kuipers OP. Evaluating the feasibility of lantibiotics as an alternative therapy against bacterial infections in humans. Expert Opin Drug Metab Toxicol 2011;7:675–680 [CrossRef][PubMed]
    [Google Scholar]
  39. Chatterjee C, Paul M, Xie L, van der Donk WA. Biosynthesis and mode of action of lantibiotics. Chem Rev 2005;105:633–684 [CrossRef][PubMed]
    [Google Scholar]
  40. Coelho ML V, Duarte AFS, Bastos MCF. Bacterial labionin-containing peptides and sactibiotics: unusual types of antimicrobial peptides with potential use in clinical settings (a review). Curr Top Med Chem 2017;17:1–22
    [Google Scholar]
  41. Maffioli SI, Monciardini P, Catacchio B, Mazzetti C, Münch D et al. Family of class I lantibiotics from actinomycetes and improvement of their antibacterial activities. Am Chem Soc Chem Biol 2015;10:1034–1042 [CrossRef][PubMed]
    [Google Scholar]
  42. Maffioli SI, Iorio M, Sosio M, Monciardini P, Gaspari E et al. Characterization of the congeners in the lantibiotic NAI-107 complex. J Nat Prod 2014;77:79–84 [CrossRef][PubMed]
    [Google Scholar]
  43. Cruz JC, Iorio M, Monciardini P, Simone M, Brunati C et al. Brominated variant of the lantibiotic NAI-107 with enhanced antibacterial potency. J Nat Prod 2015;78:2642–2647 [CrossRef][PubMed]
    [Google Scholar]
  44. Carrano L, Abbondi M, Turconi P, Candiani G, Marinelli F. A novel microbisporicin producer identified by early dereplication during lantibiotic screening. Biomed Res Int 2015;2015:1–10[CrossRef]
    [Google Scholar]
  45. Castiglione F, Cavaletti L, Losi D, Lazzarini A, Carrano L et al. A novel lantibiotic acting on bacterial cell wall synthesis produced by the uncommon actinomycete Planomonospora sp. Biochemistry 2007;46:5884–5895 [CrossRef][PubMed]
    [Google Scholar]
  46. Münch D, Müller A, Schneider T, Kohl B, Wenzel M et al. The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions. J Biol Chem 2014;289:12063–12076 [CrossRef][PubMed]
    [Google Scholar]
  47. Jabés D, Brunati C, Candiani G, Riva S, Romanó G et al. Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant gram-positive pathogens. Antimicrob Agents Chemother 2011;55:1671–1676 [CrossRef][PubMed]
    [Google Scholar]
  48. Lepak AJ, Marchillo K, Craig WA, Andes DR. In vivo pharmacokinetics and pharmacodynamics of the lantibiotic NAI-107 in a neutropenic murine thigh infection model. Antimicrob Agents Chemother 2015;59:1258–1264 [CrossRef][PubMed]
    [Google Scholar]
  49. Maffioli SI, Potenza D, Vasile F, De Matteo M, Sosio M et al. Structure revision of the lantibiotic 97518. J Nat Prod 2009;72:605–607 [CrossRef][PubMed]
    [Google Scholar]
  50. Vasile F, Potenza D, Marsiglia B, Maffioli S, Donadio S. Solution structure by nuclear magnetic resonance of the two lantibiotics 97518 and NAI-107. J Pept Sci 2012;18:129–134 [CrossRef][PubMed]
    [Google Scholar]
  51. Sherwood EJ, Bibb MJ. The antibiotic planosporicin coordinates its own production in the actinomycete Planomonospora alba. Proc Natl Acad Sci USA 2013;110:2500–2509 [CrossRef][PubMed]
    [Google Scholar]
  52. Pridmore D, Rekhif N, Pittet AC, Suri B, Mollet B. Variacin, a new lanthionine-containing bacteriocin produced by Micrococcus varians: comparison to lacticin 481 of Lactococcus lactis. Appl Environ Microbiol 1996;62:1799–1802[PubMed]
    [Google Scholar]
  53. O'Mahony T, Rekhif N, Cavadini C, Fitzgerald GF. The application of a fermented food ingredient containing 'variacin', a novel antimicrobial produced by Kocuria varians, to control the growth of Bacillus cereus in chilled dairy products. J Appl Microbiol 2001;90:106–114[PubMed][CrossRef]
    [Google Scholar]
  54. Arioli V, Berti M, Silvestri LG. Gardimycin, a new antibiotic from Actinoplanes III. Biological properties. J Antibiot 1976;29:511–515[CrossRef]
    [Google Scholar]
  55. Coronelli C, Tamoni G, Lancini GC. Gardimycin, a new antibiotic from Actinoplanes. II. Isolation and preliminary characterization. J Antibiot 1976;29:507 510[CrossRef]
    [Google Scholar]
  56. Parenti F, Pagani H, Bereta G. Gardimycin, a new antibiotic from Actinoplanes I. Description of the producer strain and fermentation studies. J Antibiot 1976;29:501 506[CrossRef]
    [Google Scholar]
  57. Kettenring JK, Malabarba A, Vékey K, Cavalleri B. Sequence determination of actagardine, a novel lantibiotic, by homonuclear 2D NMR spectroscopy. J Antibiot 1990;43:1082–1088[CrossRef]
    [Google Scholar]
  58. Zimmermann N, Metzger JW, Jung G. The tetracyclic lantibiotic actagardine 1H-NMR and 13C-NMR assignments and revised primary structure. Eur J Biochem 1995;228:786–797[CrossRef]
    [Google Scholar]
  59. Zimmermann N, Jung G. The three-dimensional solution structure of the lantibiotic murein-biosynthesis-inhibitor actagardine determined by NMR. Eur J Biochem 1997;246:809–819[PubMed][CrossRef]
    [Google Scholar]
  60. Boakes S, Cortés J, Appleyard AN, Rudd BA, Dawson MJ. Organization of the genes encoding the biosynthesis of actagardine and engineering of a variant generation system. Mol Microbiol 2009;72:1126–1136 [CrossRef][PubMed]
    [Google Scholar]
  61. Wilson-Stanford S, Kalli A, Håkansson K, Kastrantas J, Orugunty RS et al. Oxidation of lanthionines renders the lantibiotic nisin inactive. Appl Environ Microbiol 2009;75:1381–1387 [CrossRef][PubMed]
    [Google Scholar]
  62. Brötz H, Bierbaum G, Reynolds PE, Sahl H-G. The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem 1997;246:193–199[PubMed][CrossRef]
    [Google Scholar]
  63. Somma S, Merati W, Parenti F. Gardimycin, a new antibiotic inhibiting peptidoglycan synthesis. Antimicrob Agents Chemother 1977;11:396–401[PubMed][CrossRef]
    [Google Scholar]
  64. Simone M, Monciardini P, Gaspari E, Donadio S, Maffioli SI. Isolation and characterization of NAI-802, a new lantibiotic produced by two different Actinoplanes strains. J Antibiot 2013;66:73–78 [CrossRef][PubMed]
    [Google Scholar]
  65. Malabarba A, Landi M, Pallanza R, Cavalleri B. Physico-chemical and biological properties of actagardine and some acid hydrolysis product. J Antibiot 1985;38:1506–1511[CrossRef]
    [Google Scholar]
  66. Malabarba A, Pallanza R, Berti M, Cavalleri B. Synthesis and biological activity of some amide derivatives of lantibiotic actagardine. J Antibiot 1990;43:1089–1097[CrossRef]
    [Google Scholar]
  67. Vértesy L, Aretz W, Bonnefoy A, Ehlers E, Kurz M et al. Ala(0)-actagardine, a new lantibiotic from cultures of Actinoplanes liguriae ATCC 31048. J Antibiot 1999;52:730–741[PubMed][CrossRef]
    [Google Scholar]
  68. Boakes S, Appleyard AN, Cortés J, Dawson MJ. Organization of the biosynthetic genes encoding deoxyactagardine B (DAB), a new lantibiotic produced by Actinoplanes liguriae NCIMB41362. J Antibiot 2010;63:351–358 [CrossRef][PubMed]
    [Google Scholar]
  69. Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 2009;7:526–536 [CrossRef][PubMed]
    [Google Scholar]
  70. Crowther GS, Baines SD, Todhunter SL, Freeman J, Chilton CH et al. Evaluation of NVB302 versus vancomycin activity in an in&nbssp;vitro human gut model of Clostridium difficile infection. J Antimicrob Chemother 2013;68:168–176 [CrossRef][PubMed]
    [Google Scholar]
  71. Fekety R, Silva J, Kauffman C, Buggy B, Deery HG. Treatment of antibiotic-associated Clostridium difficile colitis with oral vancomycin: comparison of two dosage regimens. Am J Med 1989;86:15–19[PubMed][CrossRef]
    [Google Scholar]
  72. Teasley DG, Olson MM, Gebhard RL, Gerding DN, Peterson LR et al. Prospective randomised trial of metronidazole versus vancomycin for Clostridium difficile associated diarrhoea and colitis. Lancet 1983;322:1043–1046[CrossRef]
    [Google Scholar]
  73. Wadman SN. Compounds. US Patent 8:283,371:B2 2012
  74. Ross AC, Vederas JC. Fundamental functionality: recent developments in understanding the structure–activity relationships of lantibiotic peptides. J Antibiot 2011;64:27–34 [CrossRef][PubMed]
    [Google Scholar]
  75. Echandi E. Bacteriocin production by Corynebacterium michiganense. Physiol Biochem 1976;66:430–432
    [Google Scholar]
  76. Holtsmark I, Mantzilas D, Eijsink VG, Brurberg MB. The tomato pathogen Clavibacter michiganensis ssp. michiganensis: producer of several antimicrobial substances. J Appl Microbiol 2007;102:416–423 [CrossRef][PubMed]
    [Google Scholar]
  77. Holtsmark I, Eijsink VGH, Brurberg MB. Bacteriocins from plant pathogenic bacteria. FEMS Microbiol Lett 2008;280:1–7 [CrossRef][PubMed]
    [Google Scholar]
  78. van der Wolf JM, Elphinstone JG, Stead DE, Metzler M, Müller P et al. Epidemiology of Clavibacter michiganensis subsp. sepedonicus in relation to control of bacterial ring rot. Plant Res Int 2005;95:1–44
    [Google Scholar]
  79. Sahl H-G, Bierbaum G. Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu Rev Microbiol 1998;52:41–79 [CrossRef][PubMed]
    [Google Scholar]
  80. Witt D, Stackebrandt E. Unification of the genera Streptoverticillum and Streptomyces, and amendation of Streptomyces Waksman and Henrici 1943, 339AL. Syst Appl Microbiol 1990;13:361–371[CrossRef]
    [Google Scholar]
  81. Pridham TG, Shotwell OL, Stodola FH, Lindenfelser LA, Benedict RG et al. Antibiotics against plant disease. 2. Effective agents produced by Streptomyces cinnamomeus forma azacoluta nov. Phytopathology 1956;46:575–581
    [Google Scholar]
  82. Goethals K, Vereecke D, Jaziri M, van Montagu M, Holsters M. Leafy gall formation by Rhodococcus fascians. Annu Rev Phytopathol 2001;39:27–52 [CrossRef][PubMed]
    [Google Scholar]
  83. Machaidze G, Seelig J. Specific binding of cinnamycin (Ro 09-0198) to phosphatidylethanolamine. Comparison between micellar and membrane environments. Biochemistry 2003;42:12570–12576 [CrossRef][PubMed]
    [Google Scholar]
  84. Cloutier MM, Guernsey L, Mattes P, Koeppen B. Duramycin enhances chloride secretion in airway epithelium. Am J Physiol 1990;259:C450–C454[PubMed]
    [Google Scholar]
  85. Cloutier MM, Guernsey L, Sha'afi RI. Duramycin increases intracellular calcium in airway epithelium. Membr Biochem 1993;10:107–118[PubMed][CrossRef]
    [Google Scholar]
  86. Zebedin E, Koenig X, Radenkovic M, Pankevych H, Todt H et al. Effects of duramycin on cardiac voltage-gated ion channels. Naunyn Schmiedebergs Arch Pharmacol 2008;377:87–100 [CrossRef][PubMed]
    [Google Scholar]
  87. Grasemann H, Stehling F, Brunar H, Widmann R, Laliberte TW et al. Inhalation of Moli1901 in patients with cystic fibrosis. Chest 2007;131:1461–1466 [CrossRef][PubMed]
    [Google Scholar]
  88. Steiner I, Errhalt P, Kubesch K, Hubner M, Holy M et al. Pulmonary pharmacokinetics and safety of nebulized duramycin in healthy male volunteers. Naunyn Schmiedebergs Arch Pharmacol 2008;378:323–333 [CrossRef][PubMed]
    [Google Scholar]
  89. Mouchlis VD, Dennis EA. Membrane and inhibitor interactions of intracellular phospholipases A2. Adv Biol Regul 2016;61:17–24 [CrossRef][PubMed]
    [Google Scholar]
  90. Pettit RS, Johnson CE. Airway-rehydrating agents for the treatment of cystic fibrosis: past, present, and future. Ann Pharmacother 2011;45:49–59 [CrossRef][PubMed]
    [Google Scholar]
  91. Yates KR, Welsh J, Udegbunam NO, Greenman J, Maraveyas A et al. Duramycin exhibits antiproliferative properties and induces apoptosis in tumour cells. Blood Coagul Fibrinolysis 2012;23:396–401 [CrossRef][PubMed]
    [Google Scholar]
  92. Sambeth GM, Süssmuth RD. Synthetic studies toward labionin, a new α,α-disubstituted amino acid from type III lantibiotic labyrinthopeptin A2. J Pept Sci 2011;17:581–584 [CrossRef][PubMed]
    [Google Scholar]
  93. Seibert G, Vértesy L, Wink J, Winkler I, Süßmuth R et al. Antibacterial and antiviral peptides from Actinomadura namibiensis. Google Patents 2008;WO2008/040469
    [Google Scholar]
  94. Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I. BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol 2010;10:22 [CrossRef][PubMed]
    [Google Scholar]
  95. van Heel AJ, De Jong A, Montalbán-López M, Kok J, Kuipers OP. BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res 2013;41:W448–W453 [CrossRef][PubMed]
    [Google Scholar]
  96. Hegde NS, Sanders DA, Rodriguez R, Balasubramanian S. The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem 2011;3:725–731 [CrossRef][PubMed]
    [Google Scholar]
  97. Weisblum B, Demohn V. Thiostrepton, an inhibitor of 5OS ribosome subunit function. J Bacteriol 1970;101:1073–1075[PubMed]
    [Google Scholar]
  98. Selva E. Antibiotic GE2270 A: a novel inhibitor of bacterial protein synthesis. J Antibiot 1991;44:693–701[CrossRef]
    [Google Scholar]
  99. Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S et al. Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01-B0171, have a lasso structure. J Am Chem Soc 2006;128:7486–7491 [CrossRef][PubMed]
    [Google Scholar]
  100. Tsunakawa M, Hu S-L, Hoshino Y, Detlefson DJ, Hill SE et al. Siamycins I and II, new anti-HIV peptides: I. Fermentation, isolation, biological activity and initial characterization. J Antibiot 1995;48:433–434 [CrossRef][PubMed]
    [Google Scholar]
  101. Nakashima H, Ichiyama K, Inazawa K, Ito M, Hayashi H et al. FR901724, a novel anti-human immunodeficiency virus (HIV) peptide produced by Streptomyces, shows synergistic antiviral activities with HIV protease inhibitor and 2',3'-dideoxynucleosides. Biol Pharm Bull 1996;19:405–412 [CrossRef][PubMed]
    [Google Scholar]
  102. Onaka H, Tabata H, Igarashi Y, Sato Y, Furumai T. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. purification and characterization. J Antibiot 2001;54:1036–1044 [CrossRef][PubMed]
    [Google Scholar]
  103. Otaka T, Kaji A. Mode of action of bottromycin A2. Release of aminoacyl- or peptidyl-tRNA from ribosomes. J Biol Chem 1976;251:2299–2306[PubMed]
    [Google Scholar]
  104. Shimamura H, Gouda H, Nagai K, Hirose T, Ichioka M et al. Structure determination and total synthesis of bottromycin A2: a potent antibiotic against MRSA and VRE. Angew Chemie Int Edn 2009;48:914–917[CrossRef]
    [Google Scholar]
  105. Yildirim Z, Johnson MG. Characterization and antimicrobial spectrum of bifidocin B, a bacteriocin produced by Bifidobacterium bifidum NCFB 1454. J Food Prot 1998;61:47–51[PubMed][CrossRef]
    [Google Scholar]
  106. Zhang X, Clark CA, Pettis GS. Interstrain inhibition in the sweet potato pathogen Streptomyces ipomoeae: purification and characterization of a highly specific bacteriocin and cloning of its structural gene. Appl Environ Microbiol 2003;69:2201–2208[PubMed][CrossRef]
    [Google Scholar]
  107. Bormann C, Baier D, Hörr I, Raps C, Berger J et al. Characterization of a novel, antifungal, chitin-binding protein from Streptomyces tendae Tü901 that interferes with growth polarity. J Bacteriol 1999;181:7421–7429[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000397
Loading
/content/journal/micro/10.1099/mic.0.000397
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error