1887

Abstract

The CRISPR-Cas system is involved in bacterial immunity, virulence, gene regulation, biofilm formation and sporulation. In Salmonella enterica serovar Typhi, this system consists of five transcriptional units including antisense RNAs. It was determined that these genetic elements are expressed in minimal medium and are up-regulated by pH. In addition, a transcriptional characterization of cas3 and ascse2-1 is included herein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000414
2017-03-09
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/2/253.html?itemId=/content/journal/micro/10.1099/mic.0.000414&mimeType=html&fmt=ahah

References

  1. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007;315:1709–1712 [CrossRef][PubMed]
    [Google Scholar]
  2. Sorek R, Lawrence CM, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 2013;82:237–266 [CrossRef][PubMed]
    [Google Scholar]
  3. Brouns SJ, Matthijs MJ, Lundgren M, Westra ER, Slijkhuis RJ et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008;321:960–964 [CrossRef][PubMed]
    [Google Scholar]
  4. Hale CR, Zhao P, Olson S, Duff MO, Graveley BR et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 2009;139:945–956 [CrossRef][PubMed]
    [Google Scholar]
  5. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011;9:467–477 [CrossRef][PubMed]
    [Google Scholar]
  6. Beloglazova N, Petit P, Flick R, Brown G, Savchenko A et al. Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO J 2011;30:4616–4627 [CrossRef][PubMed]
    [Google Scholar]
  7. Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 2013;30:1335–1342[CrossRef]
    [Google Scholar]
  8. Westra ER, van Erp PB, Künne T, Wong SP, Staals RH et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by cascade and Cas3. Mol Cell 2012;46:595–605 [CrossRef][PubMed]
    [Google Scholar]
  9. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011;471:602–607 [CrossRef][PubMed]
    [Google Scholar]
  10. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014;346:1258096 [CrossRef][PubMed]
    [Google Scholar]
  11. Elmore JR, Sheppard NF, Ramia N, Deighan T, Li H et al. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system. Genes Dev 2016;30:447–459 [CrossRef][PubMed]
    [Google Scholar]
  12. Samai P, Pyenson N, Jiang W, Goldberg GW, Hatoum-Aslan A et al. Co-transcriptional DNA and RNA cleavage during Type III CRISPR-Cas immunity. Cell 2015;161:1164–1174 [CrossRef][PubMed]
    [Google Scholar]
  13. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007;35:W52–W57 [CrossRef][PubMed]
    [Google Scholar]
  14. Louwen R, Horst-Kreft D, De Boer AG, Van der Graaf L, De Knegt G et al. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Eur J Clin Microbiol Infect Dis 2013;32:207–226 [CrossRef][PubMed]
    [Google Scholar]
  15. Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DSA. CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 2013;497:254–257 [CrossRef][PubMed]
    [Google Scholar]
  16. Viswanathan P, Murphy K, Julien B, Garza AG, Kroos L. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J Bacteriol 2007;189:3738–3750 [CrossRef][PubMed]
    [Google Scholar]
  17. Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH et al. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J Bacteriol 2009;191:210–219 [CrossRef][PubMed]
    [Google Scholar]
  18. Perez-Rodriguez R, Haitjema C, Huang Q, Nam KH, Bernardis S et al. Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli. Mol Microbiol 2011;79:584–599 [CrossRef][PubMed]
    [Google Scholar]
  19. Ratner HK, Sampson TR, Weiss DS. I can see CRISPR now, even when phage are gone: a view on alternative CRISPR-Cas functions from the prokaryotic envelope. Curr Opin Infect Dis 2015;28:267–274 [CrossRef][PubMed]
    [Google Scholar]
  20. Serbanescu MA, Cordova M, Krastel K, Flick R, Beloglazova N et al. Role of the Streptococcus mutans CRISPR-Cas systems in immunity and cell physiology. J Bacteriol 2015;197:749–761 [CrossRef][PubMed]
    [Google Scholar]
  21. Williams E, Lowe TM, Savas J, Diruggiero J. Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation. Extremophiles 2007;11:19–29 [CrossRef][PubMed]
    [Google Scholar]
  22. Medina-Aparicio L, Rebollar-Flores JE, Gallego-Hernández AL, Vázquez A, Olvera L et al. The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and Leucine-responsive regulatory protein in Salmonella enterica serovar Typhi. J Bacteriol 2011;193:2396–2407 [CrossRef][PubMed]
    [Google Scholar]
  23. Shariat N, Timme RE, Pettengill JB, Barrangou R, Dudley EG. Characterization and evolution of Salmonella CRISPR-Cas systems. Microbiology 2015;161:374–386 [CrossRef][PubMed]
    [Google Scholar]
  24. Faucher SP, Curtiss R, Daigle F. Selective capture of Salmonella enterica serovar Typhi genes expressed in macrophages that are absent from the Salmonella enterica serovar Typhimurium genome. Infect Immun 2005;73:5217–5221 [CrossRef][PubMed]
    [Google Scholar]
  25. Deiwick J, Nikolaus T, Erdogan S, Hensel M. Environmental regulation of Salmonella pathogenicity island 2 gene expression. Mol Microbiol 1999;31:1759–1773[PubMed][CrossRef]
    [Google Scholar]
  26. Hernández-Lucas I, Gallego-Hernández AL, Encarnación S, Fernández-Mora M, Martínez-Batallar AG et al. The LysR-type transcriptional regulator LeuO controls expression of several genes in Salmonella enterica serovar Typhi. J Bacteriol 2008;190:1658–1670 [CrossRef][PubMed]
    [Google Scholar]
  27. Baek CH, Wang S, Roland KL, Curtiss R 3rd. Leucine-responsive regulatory protein (Lrp) acts as a virulence repressor in Salmonella enterica serovar Typhimurium. J Bacteriol 2009;191:1278–1292 [CrossRef][PubMed]
    [Google Scholar]
  28. Espinosa E, Casadesús J. Regulation of Salmonella enterica pathogenicity island 1 (SPI-1) by the LysR-type regulator LeuO. Mol Microbiol 2014;91:1057–1069 [CrossRef][PubMed]
    [Google Scholar]
  29. Guadarrama C, Villaseñor T, Calva E. The subtleties and contrasts of the LeuO regulator in Salmonella Typhi: Implications in the immune response. Front Immunol 2014;5:581 [CrossRef][PubMed]
    [Google Scholar]
  30. Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M et al. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2006;2:e81 [CrossRef][PubMed]
    [Google Scholar]
  31. Marshall DG, Sheehan BJ, Dorman CJ. A role for the leucine-responsive regulatory protein and integration host factor in the regulation of the Salmonella plasmid virulence (spv) locus in Salmonella typhimurium. Mol Microbiol 1999;34:134–145[PubMed][CrossRef]
    [Google Scholar]
  32. Navarre WW, Porwollik S, Wang Y, Mcclelland M, Rosen H et al. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 2006;313:236–238 [CrossRef][PubMed]
    [Google Scholar]
  33. Pul U, Wurm R, Arslan Z, Geissen R, Hofmann N et al. Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol 2010;7:1495–1512[CrossRef]
    [Google Scholar]
  34. Westra ER, Pul U, Heidrich N, Jore MM, Lundgren M et al. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol 2010;77:1380–1393 [CrossRef][PubMed]
    [Google Scholar]
  35. Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988;29:1035–1041[PubMed][CrossRef]
    [Google Scholar]
  36. Puente JL, Flores V, Fernández M, Fuchs Y, Calva E. Isolation of an ompC-like outer membrane protein gene from Salmonella typhi. Gene 1987;61:75–83[PubMed][CrossRef]
    [Google Scholar]
  37. Kawaji H, Mizuno T, Mizushima S. Influence of molecular size and osmolarity of sugars and dextrans on the synthesis of outer membrane proteins O-8 and O-9 of Escherichia coli K-12. J Bacteriol 1979;140:843–847[PubMed]
    [Google Scholar]
  38. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  39. Gallego-Hernández AL, Hernández-Lucas I, de La Cruz MA, Olvera L, Morett E et al. Transcriptional regulation of the assT-dsbL-dsbI gene cluster in Salmonella enterica serovar Typhi IMSS-1 depends on LeuO, H-NS, and specific growth conditions. J Bacteriol 2012;194:2254–2264 [CrossRef][PubMed]
    [Google Scholar]
  40. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000;97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  41. Simons RW, Houman F, Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 1987;53:85–96[PubMed][CrossRef]
    [Google Scholar]
  42. Martínez-Laguna Y, Calva E, Puente JL. Autoactivation and environmental regulation of bfpT expression, the gene coding for the transcriptional activator of bfpA in enteropathogenic Escherichia coli. Mol Microbiol 1999;33:153–166[PubMed][CrossRef]
    [Google Scholar]
  43. Oropeza R, Sampieri CL, Puente JL, Calva E. Negative and positive regulation of the non-osmoregulated ompS1 porin gene in Salmonella Typhi: a novel regulatory mechanism that involves OmpR. Mol Microbiol 1999;32:243–252[PubMed][CrossRef]
    [Google Scholar]
  44. Villarreal JM, Becerra-Lobato N, Rebollar-Flores JE, Medina-Aparicio L, Carbajal-Gómez E et al. The Salmonella enterica serovar Typhi ltrR-ompR-ompC-ompF genes are involved in resistance to the bile salt sodium deoxycholate and in bacterial transformation. Mol Microbiol 2014;92:1005–1024 [CrossRef][PubMed]
    [Google Scholar]
  45. De La Cruz MA, Fernández-Mora M, Guadarrama C, Flores-Valdez MA, Bustamante VH et al. LeuO antagonizes H-NS and StpA-dependent repression in Salmonella enterica ompS1. Mol Microbiol 2007;66:727–743 [CrossRef][PubMed]
    [Google Scholar]
  46. Gong B, Shin M, Sun J, Jung CH, Bolt EL et al. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3. Proc Natl Acad Sci USA 2014;111:16359–16364 [CrossRef][PubMed]
    [Google Scholar]
  47. Huo Y, Nam KH, Ding F, Lee H, Wu L et al. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat Struct Mol Biol 2014;21:771–777 [CrossRef][PubMed]
    [Google Scholar]
  48. Mulepati S, Bailey S. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3). J Biol Chem 2011;286:31896–31903 [CrossRef][PubMed]
    [Google Scholar]
  49. Flores-Valdez MA, Puente JL, Calva E. Negative osmoregulation of the Salmonella ompS1 porin gene independently of OmpR in an hns background. J Bacteriol 2003;185:6497–6506 [CrossRef][PubMed]
    [Google Scholar]
  50. Agari Y, Sakamoto K, Tamakoshi M, Oshima T, Kuramitsu S et al. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J Mol Biol 2010;395:270–281 [CrossRef][PubMed]
    [Google Scholar]
  51. Yang CD, Chen YH, Huang HY, Huang HD, Tseng CP. CRP represses the CRISPR/Cas system in Escherichia coli: evidence that endogenous CRISPR spacers impede phage P1 replication. Mol Microbiol 2014;92:1072–1091 [CrossRef][PubMed]
    [Google Scholar]
  52. Bijlsma JJ, Groisman EA. The PhoP/PhoQ system controls the intramacrophage type three secretion system of Salmonella enterica. Mol Microbiol 2005;57:85–96 [CrossRef][PubMed]
    [Google Scholar]
  53. Fink RC, Evans MR, Porwollik S, Vazquez-Torres A, Jones-Carson J et al. FNR is a global regulator of virulence and anaerobic metabolism in Salmonella enterica serovar Typhimurium (ATCC 14028s). J Bacteriol 2007;189:2262–2273 [CrossRef][PubMed]
    [Google Scholar]
  54. Gunn JS, Ryan SS, van Velkinburgh JC, Ernst RK, Miller SI. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect Immun 2000;68:6139–6146[PubMed][CrossRef]
    [Google Scholar]
  55. Humphreys S, Rowley G, Stevenson A, Anjum MF, Woodward MJ et al. Role of the two-component regulator CpxAR in the virulence of Salmonella enterica serotype Typhimurium. Infect Immun 2004;72:4654–4661 [CrossRef][PubMed]
    [Google Scholar]
  56. Lee AK, Detweiler CS, Falkow S. OmpR regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J Bacteriol 2000;182:771–781[PubMed][CrossRef]
    [Google Scholar]
  57. Mangan MW, Lucchini S, Danino V, Cróinín TO, Hinton JC et al. The integration host factor (IHF) integrates stationary-phase and virulence gene expression in Salmonella enterica serovar Typhimurium. Mol Microbiol 2006;59:1831–1847 [CrossRef][PubMed]
    [Google Scholar]
  58. Walthers D, Carroll RK, Navarre WW, Libby SJ, Fang FC et al. The response regulator SsrB activates expression of diverse Salmonella pathogenicity island 2 promoters and counters silencing by the nucleoid-associated protein H-NS. Mol Microbiol 2007;65:477–493 [CrossRef][PubMed]
    [Google Scholar]
  59. Ross W, Gosink KK, Salomon J, Igarashi K, Zou C et al. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 1993;262:1407–1413[PubMed][CrossRef]
    [Google Scholar]
  60. Bailey TL, Boden M, Buske FA, Frith M, Grant CE et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009;37:W202–W208 [CrossRef][PubMed]
    [Google Scholar]
  61. Cowing DW, Bardwell JC, Craig EA, Woolford C, Hendrix RW et al. Consensus sequence for Escherichia coli heat shock gene promoters. Proc Natl Acad Sci USA 1985;82:2679–2683[PubMed][CrossRef]
    [Google Scholar]
  62. Wade JT, Castro Roa D, Grainger DC, Hurd D, Busby SJ et al. Extensive functional overlap between sigma factors in Escherichia coli. Nat Struct Mol Biol 2006;13:806–814 [CrossRef][PubMed]
    [Google Scholar]
  63. Beuzón CR, Banks G, Deiwick J, Hensel M, Holden DW. pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella Typhimurium. Mol Microbiol 1999;33:806–816[PubMed][CrossRef]
    [Google Scholar]
  64. Kröger C, Colgan A, Srikumar S, Händler K, Sivasankaran SK et al. An infection-relevant transcriptomic compendium for Salmonella enterica serovar Typhimurium. Cell Host Microbe 2013;14:683–695 [CrossRef][PubMed]
    [Google Scholar]
  65. Löber S, Jäckel D, Kaiser N, Hensel M. Regulation of Salmonella pathogenicity island 2 genes by independent environmental signals. Int J Med Microbiol 2006;296:435–447 [CrossRef][PubMed]
    [Google Scholar]
  66. Pougach K, Semenova E, Bogdanova E, Datsenko KA, Djordjevic M et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol Microbiol 2010;77:1367–1379 [CrossRef][PubMed]
    [Google Scholar]
  67. Shimada T, Yamamoto K, Ishihama A. Involvement of leucine-response transcription factor LeuO in regulation of the genes for sulfa-drug efflux. J Bacteriol 2009;14:4562–4571[CrossRef]
    [Google Scholar]
  68. Liu T, Li Y, Wang X, Ye Q, Li H et al. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition. Nucleic Acids Res 2015;43:1044–1055 [CrossRef][PubMed]
    [Google Scholar]
  69. Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 2012;3:945 [CrossRef][PubMed]
    [Google Scholar]
  70. Richter C, Gristwood T, Clulow JS, Fineran PC. In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype I-F CRISPR/Cas system. PLoS One 2012;7:e49549 [CrossRef][PubMed]
    [Google Scholar]
  71. Patterson AG, Chang JT, Taylor C, Fineran PC. Regulation of the Type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference. Nucleic Acids Res 2015;43:6038–6048 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000414
Loading
/content/journal/micro/10.1099/mic.0.000414
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error