-
Volume 154,
Issue 5,
2008
Volume 154, Issue 5, 2008
- Pathogens And Pathogenicity
-
-
-
A missense mutation causes aspartase deficiency in Yersinia pestis
More LessIt is established that cells of Yersinia pestis, the causative agent of bubonic plague, excrete l-aspartic acid at the expense of exogenous l-glutamic acid during expression of the low-calcium response. Results of enzymic analysis provided here suggest that a previously defined deficiency of aspartase (AspA) accounts for this phenomenon rather than an elevated oxaloacetate pool. The only known distinction between most sequenced isolates of aspA from Y. pestis and the active gene in Yersinia pseudotuberculosis (the immediate progenitor of Y. pestis) is a single base transversion (G·C→T·A) causing replacement of leucine (encoded by UUG) for valine (encoded by GUG) at amino acid position 363. The gene from Y. pestis KIM possesses a unique second transversion (G·C→T·A) at amino acid 146 causing substitution of aspartic acid (encoded by GAU) with tyrosine (encoded by UAU). We show in this study that Y. pestis expresses aspA as cross-reacting immunological material (CRIM). Functional and inactive aspA of Y. pseudotuberculosis PB1 and Y. pestis KIM, respectively, were then cloned and expressed in AspA-deficient Escherichia coli. After purification to near homogeneity, the products were subjected to biochemical analysis and found to exhibit similar secondary, tertiary and quaternary (tetrameric) structures as well as comparable Michaelis constants for l-aspartic acid. However, the k cat of the Y. pestis CRIM of strain KIM is only about 0.1 % of that determined for the active AspA of Y. pseudotuberculosis. Return of valine for leucine at position 363 of the Y. pestis enzyme restored normal turnover (k cat 86±2 s−1) provided that the amino acid substitution at position 146 was also reversed. These observations have important implications for understanding the nature of the stringent low-calcium response of Y. pestis and its role in promoting acute disease.
-
-
-
-
The host adherens junction molecule nectin-1 is downregulated in Chlamydia trachomatis-infected genital epithelial cells
More LessNectin-1, a member of the immunoglobulin superfamily, is a Ca2+-independent cell adhesion protein implicated in the organization of E-cadherin-based adherens junctions (AJs) and claudin-based tight junctions (TJs) in epithelial cells. Nectin-1 also regulates cell–cell adhesion and cell polarization in a Cdc42- and Rac-dependent manner. Western blot analyses demonstrated that accumulation of host nectin-1 is decreased by 85 % at 48 hours post-infection (h.p.i.) in Chlamydia trachomatis serovar E-infected HeLa cells. Time-course experiments demonstrated that this decrease was sustained to 60 h.p.i. Nectin-1 downregulation in C. trachomatis-infected cells was prevented by both chloramphenicol exposure and prior inactivation of the chlamydiae with UV light, demonstrating that active C. trachomatis replication was required. Penicillin G-exposure studies demonstrated that nectin-1 accumulation was also altered during persistent infection. Finally, RT-PCR analyses indicated that chlamydial infection did not alter accumulation of any nectin-1 transcripts, demonstrating that nectin-1 accumulation is reduced at a post-transcriptional level. Intesrestingly, N-cadherin-dependent cell–cell junctions can be disrupted by C. trachomatis infection, as reported by Prozialeck et al. (2002) . Because interaction of nectin molecules on adjacent cells is essential for AJ formation, these data suggest that C. trachomatis may disrupt AJs, at least in part, by diminishing nectin-1 accumulation. Notably, release of chlamydiae-infected epithelial cells has been observed both in vitro from polarized monolayers and in vivo from tissues, suggesting that chlamydia-modulated downregulation of adhesion molecules and the subsequent disruption of host cell adherence may be involved in chlamydial dissemination or pathogenesis.
-
-
-
Ureaplasma parvum lipoproteins, including MB antigen, activate NF-κB through TLR1, TLR2 and TLR6
More LessUreaplasma species (Ureaplasma parvum and Ureaplasma urealyticum) are commonly isolated pathogens from the female reproductive tract and are associated with perinatal diseases in humans. Inappropriate induction of inflammatory responses may be involved in the occurrence of such diseases; however, pathogenic agents that induce the inflammatory response have not been identified in ureaplasmas. In this study, we examined the involvement of Toll-like receptors (TLRs) in the activation of the immune response by U. parvum lipoproteins, as well as the U. parvum components responsible for nuclear factor κB (NF-κB) activation. The Triton X-114 (TX-114) detergent phase of U. parvum was found to induce NF-κB through TLR2. The active components of the TX-114 detergent phase were lipoproteins, such as multiple banded (MB) antigen, UU012 and UU016 of U. parvum. The activation of NF-κB by these lipoproteins was inhibited by dominant negative (DN) constructs of TLR1 and DN TLR6. Thus, the lipoproteins from U. parvum were found to activate NF-κB through TLR1, TLR2 and TLR6. Furthermore, these lipoproteins possessed an ability to induce tumour necrosis factor-alpha (TNF-α) in mouse peritoneal macrophages.
-
-
-
Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleiotropic drug resistance in Saccharomyces cerevisiae
More LessOne of the mediators of pleiotropic drug resistance in Saccharomyces cerevisiae is the ABC-transporter gene PDR5. This gene is regulated by at least two transcription factors with Zn(2)-Cys(6) finger DNA-binding motifs, Pdr1p and Pdr3p. In this work, we searched for functional homologues of these transcription factors in Candida albicans. A C. albicans gene library was screened in a S. cerevisiae mutant lacking PDR1 and PDR3 and clones resistant to azole antifungals were isolated. From these clones, three genes responsible for azole resistance were identified. These genes (CTA4, ASG1 and CTF1) encode proteins with Zn(2)-Cys(6)-type zinc finger motifs in their N-terminal domains. The C. albicans genes expressed in S. cerevisiae could activate the transcription of a PDR5-lacZ reporter system and this reporter activity was PDRE-dependent. They could also confer resistance to azoles in a S. cerevisiae strain lacking PDR1, PDR3 and PDR5, suggesting that CTA4-, ASG1- and CTF1-dependent azole resistance can be caused by genes other than PDR5 in S. cerevisiae. Deletion of CTA4, ASG1 and CTF1 in C. albicans had no effect on fluconazole susceptibility and did not alter the expression of the ABC-transporter genes CDR1 and CDR2 or the major facilitator gene MDR1, which encode multidrug transporters known as mediators of azole resistance in C. albicans. However, additional phenotypic screening tests on the C. albicans mutants revealed that the presence of ASG1 was necessary to sustain growth on non-fermentative carbon sources (sodium acetate, acetic acid, ethanol). In conclusion, C. albicans possesses functional homologues of the S. cerevisiae Pdr1p and Pdr3p transcription factors; however, their properties in C. albicans have been rewired to other functions.
-
-
-
Copper-dependent transcriptional regulation by Candida albicans Mac1p
More LessWe have previously shown that copper uptake and regulation in the opportunistic pathogen Candida albicans has some similarities to those in Saccharomyces cerevisiae, including the activation of the copper transporter gene CaCTR1 under low-copper conditions by the transcription factor CaMac1p. However, in this study, further analysis has shown that the actual mechanism of regulation by CaMac1p is different from that of its S. cerevisiae homologue. We demonstrate for the first time, to our knowledge, that the CaMAC1 gene is transcriptionally autoregulated in a copper-dependent manner, in contrast to ScMAC1, which is constitutively transcribed. We also demonstrate that the presence of one copper response element in the promoters of CaCTR1, CaMAC1 and the ferric/cupric reductase gene CaFRE7 is sufficient for normal levels of copper-responsive transcription. In contrast, two promoter elements are essential for normal levels of copper-dependent transcriptional activation by ScMac1p. CaMac1p is also involved in the regulation of the iron-responsive transcriptional repressor gene SFU1 and the alternative oxidase gene AOX2. This work describes a key feature of the copper uptake system in C. albicans that distinguishes it from similar processes in the model yeast S. cerevisiae. The importance of copper uptake in the environment of the human host and the implications for the disease process are discussed.
-
- Physiology
-
-
-
Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus
Precise regulation of the number and placement of flagella is critical for the mono-polar-flagellated bacterium Vibrio alginolyticus to swim efficiently. We have shown previously that the number of polar flagella is positively regulated by FlhF and negatively regulated by FlhG. We now show that ΔflhF cells are non-flagellated as are most ΔflhFG cells; however, some of the ΔflhFG cells have several flagella at lateral positions. We found that FlhF–GFP was localized at the flagellated pole, and its polar localization was seen more intensely in ΔflhFG cells. On the other hand, most of the FlhG–GFP was diffused throughout the cytoplasm, although some was localized at the pole. To investigate the FlhF–FlhG interaction, immunoprecipitation was performed by using an anti-FlhF antibody, and FlhG co-precipitated with FlhF. From these results we propose a model in which FlhF localization at the pole determines polar location and production of a flagellum, FlhG interacts with FlhF to prevent FlhF from localizing at the pole, and thus FlhG negatively regulates flagellar number in V. alginolyticus cells.
-
-
-
-
Degradation of fuel oxygenates and their main intermediates by Aquincola tertiaricarbonis L108
More LessGrowth of Aquincola tertiaricarbonis L108 on the fuel oxygenates methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME), as well as on their main metabolites tert-butyl alcohol (TBA), tert-amyl alcohol (TAA) and 2-hydroxyisobutyrate (2-HIBA) was systematically investigated to characterize the range and rates of oxygenate degradation by this strain. The effective maximum growth rates for MTBE, ETBE and TAME at pH 7 and 30 °C were 0.045 h−1, 0.06 h−1 and 0.055 h−1, respectively, whereas TAA, TBA and 2-HIBA permitted growth at rates up to 0.08 h−1, 0.1 h−1 and 0.17 h−1, respectively. The experimental growth yields with all these substrates were high. Yields of 0.55 g dry mass (dm) (g MTBE)−1, 0.53 g dm (g ETBE)−1, 0.81 g dm (g TAME)−1, 0.48 g dm (g TBA)−1, 0.76 g dm (g TAA)−1 and 0.54 g dm (g 2-HIBA)−1 were obtained. Maximum specific degradation rates were 0.92 mmol MTBE h−1 (g dm)−1, 1.11 mmol ETBE h−1 g−1, 0.66 mmol TAME h−1 g−1, 1.19 mmol TAA h−1 g−1, 2.82 mmol TBA h−1 g−1, and 3.27 mmol 2-HIBA h−1 g−1. The relatively high rates with TBA, TAA and 2-HIBA indicate that the transformations of these metabolites did not limit the metabolism of MTBE and the related ether compounds. Despite the fact that these metabolites still carry a tertiary carbon atom that is commonly suspected to confer recalcitrance to the ether oxygenates, the transformation rates were in the same range as those with succinate and fructose. With MTBE, strain L108 grew at pHs between 5.5 and 8.0 at near-maximal rate, whereas no growth was found below pH 5.0 and above pH 9.0. The optimum growth temperature was 30 °C, but at 5 °C still about 15 % of the maximum rate remained, whereas no growth occurred at 42 °C. This indicates that MTBE metabolites are valuable substrates and that A. tertiaricarbonis L108 is a good candidate for bioremediation purposes. The possible origin of its exceptional metabolic capability is discussed in terms of the evolution of enzymic activities involved in the conversion of compounds carrying tertiary butyl groups.
-
- Plant-Microbe Interactions
-
-
-
Influence of the chloride channel of Fusarium oxysporum on extracellular laccase activity and virulence on tomato plants
More LessCLC-type voltage-gated chloride channels are a family of proteins which mediate chloride transport across the plasma and intracellular membranes. A clc1 gene from the vascular wilt fungus Fusarium oxysporum was characterized and disrupted. The predicted Clc1 protein contained highly conserved transmembrane and CBS domains of this protein family and showed significant identities to the Saccharomyces cerevisiae GEF1 and the Cryptococcus neoformans CLC-A chloride channels. Inactivation of clc1 caused a deficiency in laccase activity which was more severe than that found in any of the structural laccase mutants previously described. The addition of copper sulphate to the growth medium resulted in total recovery of extracellular laccase activity in Δclc1 mutants, although it did not activate transcription of any laccase genes. The pleiotropic phenotype displayed by the Fusarium chloride channel-deficient mutants included a significant delay in the development of disease on tomato plants, with a higher sensitivity to oxidative stress compounds as well as a significant decrease in laccase activity, thus suggesting a possible connection between virulence and the two processes. Nevertheless, we cannot rule out that additional phenotypes present in the Δclc1 mutants could play an essential role in the full virulence of Fusarium.
-
-
-
-
Internuclear gene silencing in Phytophthora infestans is established through chromatin remodelling
In the plant pathogen Phytophthora infestans, nuclear integration of inf1 transgenic DNA sequences results in internuclear gene silencing of inf1. Although silencing is regulated at the transcriptional level, it also affects transcription from other nuclei within heterokaryotic cells of the mycelium. Here we report experiments exploring the mechanism of internuclear gene silencing in P. infestans. The DNA methylation inhibitor 5-azacytidine induced reversion of the inf1-silenced state. Also, the histone deacetylase inhibitor trichostatin-A was able to reverse inf1 silencing. inf1-expression levels returned to the silenced state when the inhibitors were removed except in non-transgenic inf1-silenced strains that were generated via internuclear gene silencing, where inf1 expression was restored permanently. Therefore, inf1-transgenic sequences are required to maintain the silenced state. Prolonged culture of non-transgenic inf1-silenced strains resulted in gradual reactivation of inf1 gene expression. Nuclease digestion of inf1-silenced and non-silenced nuclei showed that inf1 sequences in silenced nuclei were less rapidly degraded than non-silenced inf1 sequences. Bisulfite sequencing of the endogenous inf1 locus did not result in detection of any cytosine methylation. Our findings suggest that the inf1-silenced state is based on chromatin remodelling.
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
