1887

Abstract

Growth of L108 on the fuel oxygenates methyl -butyl ether (MTBE), ethyl -butyl ether (ETBE) and -amyl methyl ether (TAME), as well as on their main metabolites -butyl alcohol (TBA), -amyl alcohol (TAA) and 2-hydroxyisobutyrate (2-HIBA) was systematically investigated to characterize the range and rates of oxygenate degradation by this strain. The effective maximum growth rates for MTBE, ETBE and TAME at pH 7 and 30 °C were 0.045 h, 0.06 h and 0.055 h, respectively, whereas TAA, TBA and 2-HIBA permitted growth at rates up to 0.08 h, 0.1 h and 0.17 h, respectively. The experimental growth yields with all these substrates were high. Yields of 0.55 g dry mass (dm) (g MTBE), 0.53 g dm (g ETBE), 0.81 g dm (g TAME), 0.48 g dm (g TBA), 0.76 g dm (g TAA) and 0.54 g dm (g 2-HIBA) were obtained. Maximum specific degradation rates were 0.92 mmol MTBE h (g dm), 1.11 mmol ETBE h g, 0.66 mmol TAME h g, 1.19 mmol TAA h g, 2.82 mmol TBA h g, and 3.27 mmol 2-HIBA h g. The relatively high rates with TBA, TAA and 2-HIBA indicate that the transformations of these metabolites did not limit the metabolism of MTBE and the related ether compounds. Despite the fact that these metabolites still carry a tertiary carbon atom that is commonly suspected to confer recalcitrance to the ether oxygenates, the transformation rates were in the same range as those with succinate and fructose. With MTBE, strain L108 grew at pHs between 5.5 and 8.0 at near-maximal rate, whereas no growth was found below pH 5.0 and above pH 9.0. The optimum growth temperature was 30 °C, but at 5 °C still about 15 % of the maximum rate remained, whereas no growth occurred at 42 °C. This indicates that MTBE metabolites are valuable substrates and that L108 is a good candidate for bioremediation purposes. The possible origin of its exceptional metabolic capability is discussed in terms of the evolution of enzymic activities involved in the conversion of compounds carrying tertiary butyl groups.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014159-0
2008-05-01
2020-08-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1414.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014159-0&mimeType=html&fmt=ahah

References

  1. Baehr A. I., Stackelberg P. E., Baker R. J.. 1999; Evaluation of the atmosphere as a source of volatile organic compounds in shallow groundwater. Water Resour Res35:127–136
    [Google Scholar]
  2. Banerjee A., Sharma R., Banerjee U. C.. 2002; The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol60:33–44
    [Google Scholar]
  3. Breuer U., Bäjen C., Rohwerder T., Müller R. H., Harms H.. 2007; MTBE degradation genes of an Ideonella -like bacterium L108. In Proceedings of the 3rd European Conference on MTBE and Other Fuel Oxygenates p103 Antwerp, Belgium: VITO;
    [Google Scholar]
  4. Chauvaux S., Chevalier F., Le Dantec C., Fayolle F., Miras I., Kunst F., Beguin P.. 2001; Cloning of a genetically unstable cytochrome P-450 gene cluster involved in degradation of the pollutant ethyl tert -butyl ether by Rhodococcus ruber . J Bacteriol183:6551–6557
    [Google Scholar]
  5. Deeb R. A., Scow K. M., Alvarez-Cohen L.. 2000; Aerobic MTBE biodegradation: an examination of past studies, current challenges and future research directions. Biodegradation11:171–186
    [Google Scholar]
  6. Dubbels B. L., Sayavedra-Soto L., Arp D. J.. 2007; Butane monooxygenase of ‘ Pseudomonas butanovora ’: purification and biochemical characterization of a terminal-alkane hydroxylating diiron monooxygenase. Microbiology153:1808–1816
    [Google Scholar]
  7. Fayolle F., Vandecasteele J. P., Monot F.. 2001; Microbial degradation and fate in the environment of methyl tert -butyl ether and related fuel oxygenates. Appl Microbiol Biotechnol56:339–349
    [Google Scholar]
  8. Forslund K., Morant M., Jørgensen B., Olsen C. E., Asamizu E., Sato S., Tabata S., Bak S.. 2004; Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus . Plant Physiol135:71–84
    [Google Scholar]
  9. François A., Mathis H., Godefroy D., Piveteau P., Fayolle F., Monot F.. 2002; Biodegradation of methyl tert -butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012. Appl Environ Microbiol68:2754–2762
    [Google Scholar]
  10. François A., Garnier L., Mathis H., Fayolle F., Monot F.. 2003; Roles of tert -butyl formate, tert -butyl alcohol and acetone in the regulation of methyl tert -butyl ether degradation by Mycobacterium austroafricanum IFP 2012. Appl Microbiol Biotechnol62:256–262
    [Google Scholar]
  11. Haase K., Wendlandt K. D., Gräber A., Stottmeister U.. 2006; Cometabolic degradation of MTBE using methane-, propane-, and butane-utilizing enrichment cultures and Rhodococcus sp. BU3. Eng Life Sci6:508–513
    [Google Scholar]
  12. Hanson J. R., Ackerman C. E., Scow K. M.. 1999; Biodegradation of methyl tert -butyl ether by a bacterial pure culture. Appl Environ Microbiol65:4788–4792
    [Google Scholar]
  13. Hatzinger P. B., McClay K., Vainberg S., Tugusheva M., Condee C. W., Steffan R. J.. 2001; Biodegradation of methyl tert -butyl ether by a pure bacterial culture. Appl Environ Microbiol67:5601–5607
    [Google Scholar]
  14. Healey F. P.. 1980; Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb Ecol5:281–286
    [Google Scholar]
  15. Hernandez-Perez G., Fayolle F., Vandecasteele J.-P.. 2001; Biodegradation of ethyl tert -butyl ether (ETBE), methyl tert -butyl ether (MTBE) and tert -amyl methyl ether (TAME) by Gordonia terrae . Appl Microbiol Biotechnol55:117–121
    [Google Scholar]
  16. Holowach L. P., Swift G. W., Wolk S. W., Klawiter L.. ASC Symposium Series 575 1994; Bacterial conversion of a waste stream containing methyl-2-hydroxyisobutyric acid to biodegradable polyhydroxyalkanoate polymers. In Polymers from Agricultural Coproducts pp202–211 Edited by Fishman M. L., Friedman R. B., Huang S. J.. Washington, DC: ACS;
    [Google Scholar]
  17. Hristova K. R., Schmidt R., Chakicherla A. Y., Legler T. C., Wu J., Chain P. S., Scow K. M., Kane S. R.. 2007; Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel-oxygenates methyl- tert -butyl ether and ethanol. Appl Environ Microbiol73:7347–7357
    [Google Scholar]
  18. Hyman M., Aslett D., Golant K., Jones J.. 2007; Microbial production and consumption of tertiary butyl alcohol. In Proceedings of the 3rd European Conference on MTBE and Other Fuel Oxygenates p82 Antwerp, Belgium: VITO;
    [Google Scholar]
  19. Imai T., Takigawa H., Nakagawa S., Shen G.-J., Kodama T., Minoda Y.. 1986; Microbial oxidation of hydrocarbons and related compounds by whole-cell suspensions of the methane-oxidizing bacterium H-2. Appl Environ Microbiol52:1403–1406
    [Google Scholar]
  20. Janssen D. B., Dinkla I. J. T., Poelarends G. J., Terpstra P.. 2005; Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ Microbiol7:1868–1882
    [Google Scholar]
  21. Kane S. R., Chakicherla A. Y., Chain P. S., Schmidt R., Shin M. W., Legler T. C., Scow K. M., Larimer F. W., Lucas S. M.. other authors 2007; Whole-genome analysis of the methyl tert -butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol189:1931–1945
    [Google Scholar]
  22. Klinger J., Stiehler C., Sacher F., Branch H. J.. 2002; MTBE (methyl tertiary -butyl ether) in groundwaters: monitoring results from Germany. J Environ Monit4:276–279
    [Google Scholar]
  23. Krayer von Krauss M., Harremoës P.. 2001; MTBE in petrol as a substitute for lead. In Late Lessons from Early Warning: The Precautionary Principle 1896–2000Environmental Issue Reportvol. 22 Edited by Harremoës P.. Copenhagen: Office for Official Publications of the European Community;
    [Google Scholar]
  24. Lechner U., Brodkorb D., Geyer R., Hause G., Härtig C., Auling G., Fayolle-Guichard F., Piveteau R., Müller R. H., Rohwerder T.. 2007; Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol57:1295–1303
    [Google Scholar]
  25. Lin C.-W., Tsai S.-L., Hou S.-H.. 2007; Effects of environmental settings on MTBE removal for a mixed culture and its monoculture isolation. Appl Microbiol Biotechnol74:194–201
    [Google Scholar]
  26. Lopes Ferreira N., Maciel H., Mathis H., Monot F., Fayolle-Guichard F., Greer C. W.. 2006; Isolation and characterization of a new Mycobacterium austroafricanum strain, IFP 2015, growing on MTBE. Appl Microbiol Biotechnol70:358–365
    [Google Scholar]
  27. Lopes Ferreira N., Mathis H., Labbé D., Monot F., Greer C. W., Fayolle-Guichard F.. 2007; n-Alkane assimilation and tert -butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains. Appl Microbiol Biotechnol75:909–919
    [Google Scholar]
  28. McGregor D.. 2006; Methyl tertiary-butyl ether: studies for potential human health hazards. Crit Rev Toxicol36:319–358
    [Google Scholar]
  29. Müller R. H., Rohwerder T., Harms H.. 2007; Carbon conversion efficiency and limits of productive bacterial degradation of methyl tert -butyl ether and related compounds. Appl Environ Microbiol73:1783–1791
    [Google Scholar]
  30. Nakatsu C. H., Hristova K., Hanada S., Meng X.-Y., Hanson J., Scow K. M., Kamagata Y.. 2006; Methylibium petroleiphilum PM1T gen. nov., sp. nov., a new methyl tert -butyl ether (MTBE) degrading methylotroph of the beta-Proteobacteria. Int J Syst Evol Microbiol56:983–989
    [Google Scholar]
  31. Nemecek-Marshall M., Wojciechowski C., Wagner W. P., Fall R.. 1999; Acetone formation in the Vibrio family: a new pathway for bacterial leucine catabolism. J Bacteriol181:7493–7499
    [Google Scholar]
  32. Okeke B. C., Frankenberger W. T. Jr. 2003; Biodegradation of methyl tertiary butyl ether (MTBE) by a bacterial enrichment consortium and its monoculture isolates. Microbiol Res158:99–106
    [Google Scholar]
  33. Onodera M., Sakai H., Endo Y., Ogasawara N.. 1990; Oxidation of short-chain iso-alkanes by gaseous hydrocarbon assimilating mold, Scedosporium sp. A-4. Agric Biol Chem54:2413–2416
    [Google Scholar]
  34. Patel R. N., Hou C. T., Laskin A. I., Felix A.. 1982; Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. strain CRL-26. Appl Environ Microbiol44:1130–1137
    [Google Scholar]
  35. Piveteau P., Fayolle F., Vandecasteele J. P., Monot F.. 2001; Biodegradation of tert -butyl alcohol and related xenobiotics by a methylotrophic bacterial isolate. Appl Microbiol Biotechnol55:369–373
    [Google Scholar]
  36. Pruden A., Suidan M.. 2004; Effect of benzene, toluene, ethylbenzene, and p -xylene (BTEX) mixture on biodegradation of methyl tert -butyl ether (MTBE) and tert -butyl alcohol (TBA) by a pure culture UC1. Biodegradation15:213–227
    [Google Scholar]
  37. Rohwerder T., Müller R. H.. 2007; New bacterial cobalamin-dependent CoA-carbonyl mutases involved in degradation pathways. In Vitamin B Research Advances pp81–98 Edited by Elliot C. M.. New York: Nova Science Publishers;
    [Google Scholar]
  38. Rohwerder T., Cenini V., Held C., Martienssen M., Lechner U., Müller R. H.. 2004; Novel MTBE-degrading bacterial isolate from Leuna groundwater (Germany): characterization of the degradation pathway with focus on 2-HIBA oxidation. In Proceedings of the 2nd European Conference on MTBE pp47–50 Barcelona, Spain: CSIC;
    [Google Scholar]
  39. Rohwerder T., Breuer U., Benndorf D., Lechner U., Müller R. H.. 2006; The alkyl tert -butyl ether intermediate 2-hydroxyisobutyrate is degraded via a novel cobalamin-dependent mutase pathway. Appl Environ Microbiol72:4128–4135
    [Google Scholar]
  40. Rosell M., Barcelo D., Rohwerder T., Breuer U., Gehre M., Richnow H. H.. 2007; Variation in 13C/12C and D/H enrichment factors of aerobic bacterial fuel oxygenate degradation. Environ Sci Technol41:2036–2043
    [Google Scholar]
  41. Schäfer F., Breuer U., Benndorf D., von Bergen M., Harms H., Müller R. H.. 2007; Growth of Aquincola tertiaricarbonis L108 on tert -butyl alcohol leads to the induction of a phthalate dioxygenase-related protein and its associated oxidoreductase subunit. Eng Life Sci7:512–519
    [Google Scholar]
  42. Schmidt T. C., Morgenroth E., Schirmer M., Effenberger M., Haderlein S. B.. 2002; Use and occurrence of fuel oxygenates in Europe. In Oxygenates in Gasoline: Environmental Aspects pp58–79 Edited by Diaz A. F., Drogos D. L. Washington DC: ACS;
    [Google Scholar]
  43. Schmidt T. C., Schirmer M., Weiss H., Haderlein S. B.. 2004; Microbial degradation of methyl tert -butyl ether and tert -butyl alcohol in the subsurface. J Contam Hydrol70:173–203
    [Google Scholar]
  44. Squillace P., Zogorski J. S., Wilber W. G., Price V. C.. 1996; Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993–1994. Environ Sci Technol30:1721–1730
    [Google Scholar]
  45. Squillace P. J., Pankow J. F., Korte N. E., Zogorski J. S.. 1997; Review of the environmental behavior and fate of methyl tert -butyl ether. Environ Toxicol Chem16:1836–1844
    [Google Scholar]
  46. Steffan R. J., McClay K., Vainberg S., Condee C. W., Zhang D.. 1997; Biodegradation of the gasoline oxygenates methyl tert -butyl ether, ethyl tert -butyl ether, and tert -amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol63:4216–4222
    [Google Scholar]
  47. Uotila J., Zaitsev G. M.. 2003; Variovorax strains capable of degrading methyl tert -butyl ether and their use. World Patent WO03:033684 A1
    [Google Scholar]
  48. Zaitsev G. M., Uotila J. S., Häggblom M. M.. 2007; Biodegradation of methyl tert -butyl ether by cold adapted mixed culture and pure bacterial cultures. Appl Microbiol Biotechnol74:1092–1102
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014159-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014159-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error