1887

Abstract

Growth of L108 on the fuel oxygenates methyl -butyl ether (MTBE), ethyl -butyl ether (ETBE) and -amyl methyl ether (TAME), as well as on their main metabolites -butyl alcohol (TBA), -amyl alcohol (TAA) and 2-hydroxyisobutyrate (2-HIBA) was systematically investigated to characterize the range and rates of oxygenate degradation by this strain. The effective maximum growth rates for MTBE, ETBE and TAME at pH 7 and 30 °C were 0.045 h, 0.06 h and 0.055 h, respectively, whereas TAA, TBA and 2-HIBA permitted growth at rates up to 0.08 h, 0.1 h and 0.17 h, respectively. The experimental growth yields with all these substrates were high. Yields of 0.55 g dry mass (dm) (g MTBE), 0.53 g dm (g ETBE), 0.81 g dm (g TAME), 0.48 g dm (g TBA), 0.76 g dm (g TAA) and 0.54 g dm (g 2-HIBA) were obtained. Maximum specific degradation rates were 0.92 mmol MTBE h (g dm), 1.11 mmol ETBE h g, 0.66 mmol TAME h g, 1.19 mmol TAA h g, 2.82 mmol TBA h g, and 3.27 mmol 2-HIBA h g. The relatively high rates with TBA, TAA and 2-HIBA indicate that the transformations of these metabolites did not limit the metabolism of MTBE and the related ether compounds. Despite the fact that these metabolites still carry a tertiary carbon atom that is commonly suspected to confer recalcitrance to the ether oxygenates, the transformation rates were in the same range as those with succinate and fructose. With MTBE, strain L108 grew at pHs between 5.5 and 8.0 at near-maximal rate, whereas no growth was found below pH 5.0 and above pH 9.0. The optimum growth temperature was 30 °C, but at 5 °C still about 15 % of the maximum rate remained, whereas no growth occurred at 42 °C. This indicates that MTBE metabolites are valuable substrates and that L108 is a good candidate for bioremediation purposes. The possible origin of its exceptional metabolic capability is discussed in terms of the evolution of enzymic activities involved in the conversion of compounds carrying tertiary butyl groups.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014159-0
2008-05-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1414.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014159-0&mimeType=html&fmt=ahah

References

  1. Baehr, A. I., Stackelberg, P. E. & Baker, R. J. ( 1999; ). Evaluation of the atmosphere as a source of volatile organic compounds in shallow groundwater. Water Resour Res 35, 127–136.[CrossRef]
    [Google Scholar]
  2. Banerjee, A., Sharma, R. & Banerjee, U. C. ( 2002; ). The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60, 33–44.[CrossRef]
    [Google Scholar]
  3. Breuer, U., Bäjen, C., Rohwerder, T., Müller, R. H. & Harms, H. ( 2007; ). MTBE degradation genes of an Ideonella-like bacterium L108. In Proceedings of the 3rd European Conference on MTBE and Other Fuel Oxygenates, p. 103. Antwerp, Belgium: VITO.
  4. Chauvaux, S., Chevalier, F., Le Dantec, C., Fayolle, F., Miras, I., Kunst, F. & Beguin, P. ( 2001; ). Cloning of a genetically unstable cytochrome P-450 gene cluster involved in degradation of the pollutant ethyl tert-butyl ether by Rhodococcus ruber. J Bacteriol 183, 6551–6557.[CrossRef]
    [Google Scholar]
  5. Deeb, R. A., Scow, K. M. & Alvarez-Cohen, L. ( 2000; ). Aerobic MTBE biodegradation: an examination of past studies, current challenges and future research directions. Biodegradation 11, 171–186.[CrossRef]
    [Google Scholar]
  6. Dubbels, B. L., Sayavedra-Soto, L. & Arp, D. J. ( 2007; ). Butane monooxygenase of ‘Pseudomonas butanovora’: purification and biochemical characterization of a terminal-alkane hydroxylating diiron monooxygenase. Microbiology 153, 1808–1816.[CrossRef]
    [Google Scholar]
  7. Fayolle, F., Vandecasteele, J. P. & Monot, F. ( 2001; ). Microbial degradation and fate in the environment of methyl tert-butyl ether and related fuel oxygenates. Appl Microbiol Biotechnol 56, 339–349.[CrossRef]
    [Google Scholar]
  8. Forslund, K., Morant, M., Jørgensen, B., Olsen, C. E., Asamizu, E., Sato, S., Tabata, S. & Bak, S. ( 2004; ). Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Plant Physiol 135, 71–84.[CrossRef]
    [Google Scholar]
  9. François, A., Mathis, H., Godefroy, D., Piveteau, P., Fayolle, F. & Monot, F. ( 2002; ). Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012. Appl Environ Microbiol 68, 2754–2762.[CrossRef]
    [Google Scholar]
  10. François, A., Garnier, L., Mathis, H., Fayolle, F. & Monot, F. ( 2003; ). Roles of tert-butyl formate, tert-butyl alcohol and acetone in the regulation of methyl tert-butyl ether degradation by Mycobacterium austroafricanum IFP 2012. Appl Microbiol Biotechnol 62, 256–262.[CrossRef]
    [Google Scholar]
  11. Haase, K., Wendlandt, K. D., Gräber, A. & Stottmeister, U. ( 2006; ). Cometabolic degradation of MTBE using methane-, propane-, and butane-utilizing enrichment cultures and Rhodococcus sp. BU3. Eng Life Sci 6, 508–513.[CrossRef]
    [Google Scholar]
  12. Hanson, J. R., Ackerman, C. E. & Scow, K. M. ( 1999; ). Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Appl Environ Microbiol 65, 4788–4792.
    [Google Scholar]
  13. Hatzinger, P. B., McClay, K., Vainberg, S., Tugusheva, M., Condee, C. W. & Steffan, R. J. ( 2001; ). Biodegradation of methyl tert-butyl ether by a pure bacterial culture. Appl Environ Microbiol 67, 5601–5607.[CrossRef]
    [Google Scholar]
  14. Healey, F. P. ( 1980; ). Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb Ecol 5, 281–286.[CrossRef]
    [Google Scholar]
  15. Hernandez-Perez, G., Fayolle, F. & Vandecasteele, J.-P. ( 2001; ). Biodegradation of ethyl tert-butyl ether (ETBE), methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME) by Gordonia terrae. Appl Microbiol Biotechnol 55, 117–121.[CrossRef]
    [Google Scholar]
  16. Holowach, L. P., Swift, G. W., Wolk, S. W. & Klawiter, L. ( 1994; ). Bacterial conversion of a waste stream containing methyl-2-hydroxyisobutyric acid to biodegradable polyhydroxyalkanoate polymers. In Polymers from Agricultural Coproducts, pp. 202–211. Edited by M. L. Fishman, R. B. Friedman & S. J. Huang. ASC Symposium Series 575. Washington, DC: ACS.
  17. Hristova, K. R., Schmidt, R., Chakicherla, A. Y., Legler, T. C., Wu, J., Chain, P. S., Scow, K. M. & Kane, S. R. ( 2007; ). Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel-oxygenates methyl-tert-butyl ether and ethanol. Appl Environ Microbiol 73, 7347–7357.[CrossRef]
    [Google Scholar]
  18. Hyman, M., Aslett, D., Golant, K. & Jones, J. ( 2007; ). Microbial production and consumption of tertiary butyl alcohol. In Proceedings of the 3rd European Conference on MTBE and Other Fuel Oxygenates, p. 82. Antwerp, Belgium: VITO.
  19. Imai, T., Takigawa, H., Nakagawa, S., Shen, G.-J., Kodama, T. & Minoda, Y. ( 1986; ). Microbial oxidation of hydrocarbons and related compounds by whole-cell suspensions of the methane-oxidizing bacterium H-2. Appl Environ Microbiol 52, 1403–1406.
    [Google Scholar]
  20. Janssen, D. B., Dinkla, I. J. T., Poelarends, G. J. & Terpstra, P. ( 2005; ). Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ Microbiol 7, 1868–1882.[CrossRef]
    [Google Scholar]
  21. Kane, S. R., Chakicherla, A. Y., Chain, P. S., Schmidt, R., Shin, M. W., Legler, T. C., Scow, K. M., Larimer, F. W., Lucas, S. M. & other authors ( 2007; ). Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189, 1931–1945.[CrossRef]
    [Google Scholar]
  22. Klinger, J., Stiehler, C., Sacher, F. & Branch, H. J. ( 2002; ). MTBE (methyl tertiary-butyl ether) in groundwaters: monitoring results from Germany. J Environ Monit 4, 276–279.[CrossRef]
    [Google Scholar]
  23. Krayer von Krauss, M. & Harremoës, P. ( 2001; ). MTBE in petrol as a substitute for lead. In Late Lessons from Early Warning: The Precautionary Principle 1896–2000. Environmental Issue Report, vol. 22. Edited by P. Harremoës. Copenhagen: Office for Official Publications of the European Community.
  24. Lechner, U., Brodkorb, D., Geyer, R., Hause, G., Härtig, C., Auling, G., Fayolle-Guichard, F., Piveteau, R., Müller, R. H. & Rohwerder, T. ( 2007; ). Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol 57, 1295–1303.[CrossRef]
    [Google Scholar]
  25. Lin, C.-W., Tsai, S.-L. & Hou, S.-H. ( 2007; ). Effects of environmental settings on MTBE removal for a mixed culture and its monoculture isolation. Appl Microbiol Biotechnol 74, 194–201.[CrossRef]
    [Google Scholar]
  26. Lopes Ferreira, N., Maciel, H., Mathis, H., Monot, F., Fayolle-Guichard, F. & Greer, C. W. ( 2006; ). Isolation and characterization of a new Mycobacterium austroafricanum strain, IFP 2015, growing on MTBE. Appl Microbiol Biotechnol 70, 358–365.[CrossRef]
    [Google Scholar]
  27. Lopes Ferreira, N., Mathis, H., Labbé, D., Monot, F., Greer, C. W. & Fayolle-Guichard, F. ( 2007; ). n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains. Appl Microbiol Biotechnol 75, 909–919.[CrossRef]
    [Google Scholar]
  28. McGregor, D. ( 2006; ). Methyl tertiary-butyl ether: studies for potential human health hazards. Crit Rev Toxicol 36, 319–358.[CrossRef]
    [Google Scholar]
  29. Müller, R. H., Rohwerder, T. & Harms, H. ( 2007; ). Carbon conversion efficiency and limits of productive bacterial degradation of methyl tert-butyl ether and related compounds. Appl Environ Microbiol 73, 1783–1791.[CrossRef]
    [Google Scholar]
  30. Nakatsu, C. H., Hristova, K., Hanada, S., Meng, X.-Y., Hanson, J., Scow, K. M. & Kamagata, Y. ( 2006; ). Methylibium petroleiphilum PM1T gen. nov., sp. nov., a new methyl tert-butyl ether (MTBE) degrading methylotroph of the beta-Proteobacteria. Int J Syst Evol Microbiol 56, 983–989.[CrossRef]
    [Google Scholar]
  31. Nemecek-Marshall, M., Wojciechowski, C., Wagner, W. P. & Fall, R. ( 1999; ). Acetone formation in the Vibrio family: a new pathway for bacterial leucine catabolism. J Bacteriol 181, 7493–7499.
    [Google Scholar]
  32. Okeke, B. C. & Frankenberger, W. T., Jr ( 2003; ). Biodegradation of methyl tertiary butyl ether (MTBE) by a bacterial enrichment consortium and its monoculture isolates. Microbiol Res 158, 99–106.[CrossRef]
    [Google Scholar]
  33. Onodera, M., Sakai, H., Endo, Y. & Ogasawara, N. ( 1990; ). Oxidation of short-chain iso-alkanes by gaseous hydrocarbon assimilating mold, Scedosporium sp. A-4. Agric Biol Chem 54, 2413–2416.[CrossRef]
    [Google Scholar]
  34. Patel, R. N., Hou, C. T., Laskin, A. I. & Felix, A. ( 1982; ). Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. strain CRL-26. Appl Environ Microbiol 44, 1130–1137.
    [Google Scholar]
  35. Piveteau, P., Fayolle, F., Vandecasteele, J. P. & Monot, F. ( 2001; ). Biodegradation of tert-butyl alcohol and related xenobiotics by a methylotrophic bacterial isolate. Appl Microbiol Biotechnol 55, 369–373.[CrossRef]
    [Google Scholar]
  36. Pruden, A. & Suidan, M. ( 2004; ). Effect of benzene, toluene, ethylbenzene, and p-xylene (BTEX) mixture on biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) by a pure culture UC1. Biodegradation 15, 213–227.[CrossRef]
    [Google Scholar]
  37. Rohwerder, T. & Müller, R. H. ( 2007; ). New bacterial cobalamin-dependent CoA-carbonyl mutases involved in degradation pathways. In Vitamin B Research Advances, pp. 81–98. Edited by C. M. Elliot. New York: Nova Science Publishers.
  38. Rohwerder, T., Cenini, V., Held, C., Martienssen, M., Lechner, U. & Müller, R. H. ( 2004; ). Novel MTBE-degrading bacterial isolate from Leuna groundwater (Germany): characterization of the degradation pathway with focus on 2-HIBA oxidation. In Proceedings of the 2nd European Conference on MTBE, pp. 47–50. Barcelona, Spain: CSIC.
  39. Rohwerder, T., Breuer, U., Benndorf, D., Lechner, U. & Müller, R. H. ( 2006; ). The alkyl tert-butyl ether intermediate 2-hydroxyisobutyrate is degraded via a novel cobalamin-dependent mutase pathway. Appl Environ Microbiol 72, 4128–4135.[CrossRef]
    [Google Scholar]
  40. Rosell, M., Barcelo, D., Rohwerder, T., Breuer, U., Gehre, M. & Richnow, H. H. ( 2007; ). Variation in 13C/12C and D/H enrichment factors of aerobic bacterial fuel oxygenate degradation. Environ Sci Technol 41, 2036–2043.[CrossRef]
    [Google Scholar]
  41. Schäfer, F., Breuer, U., Benndorf, D., von Bergen, M., Harms, H. & Müller, R. H. ( 2007; ). Growth of Aquincola tertiaricarbonis L108 on tert-butyl alcohol leads to the induction of a phthalate dioxygenase-related protein and its associated oxidoreductase subunit. Eng Life Sci 7, 512–519.[CrossRef]
    [Google Scholar]
  42. Schmidt, T. C., Morgenroth, E., Schirmer, M., Effenberger, M. & Haderlein, S. B. ( 2002; ). Use and occurrence of fuel oxygenates in Europe. In Oxygenates in Gasoline: Environmental Aspects, pp. 58–79. Edited by A. F. Diaz & D. L. Drogos. Washington DC: ACS.
  43. Schmidt, T. C., Schirmer, M., Weiss, H. & Haderlein, S. B. ( 2004; ). Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface. J Contam Hydrol 70, 173–203.[CrossRef]
    [Google Scholar]
  44. Squillace, P., Zogorski, J. S., Wilber, W. G. & Price, V. C. ( 1996; ). Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993–1994. Environ Sci Technol 30, 1721–1730.[CrossRef]
    [Google Scholar]
  45. Squillace, P. J., Pankow, J. F., Korte, N. E. & Zogorski, J. S. ( 1997; ). Review of the environmental behavior and fate of methyl tert-butyl ether. Environ Toxicol Chem 16, 1836–1844.[CrossRef]
    [Google Scholar]
  46. Steffan, R. J., McClay, K., Vainberg, S., Condee, C. W. & Zhang, D. ( 1997; ). Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol 63, 4216–4222.
    [Google Scholar]
  47. Uotila, J. & Zaitsev, G. M. ( 2003; ). Variovorax strains capable of degrading methyl tert-butyl ether and their use. World Patent WO 03/033684 A1.
  48. Zaitsev, G. M., Uotila, J. S. & Häggblom, M. M. ( 2007; ). Biodegradation of methyl tert-butyl ether by cold adapted mixed culture and pure bacterial cultures. Appl Microbiol Biotechnol 74, 1092–1102.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014159-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014159-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1414 - 1421

Supplementary figures[PDF] (17 kb): Influence of the temperature on the growth of L108 on MTBE. Influence of pH on the growth of L108 on MTBE.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error