1887

Abstract

species ( and ) are commonly isolated pathogens from the female reproductive tract and are associated with perinatal diseases in humans. Inappropriate induction of inflammatory responses may be involved in the occurrence of such diseases; however, pathogenic agents that induce the inflammatory response have not been identified in ureaplasmas. In this study, we examined the involvement of Toll-like receptors (TLRs) in the activation of the immune response by lipoproteins, as well as the components responsible for nuclear factor B (NF-B) activation. The Triton X-114 (TX-114) detergent phase of was found to induce NF-B through TLR2. The active components of the TX-114 detergent phase were lipoproteins, such as multiple banded (MB) antigen, UU012 and UU016 of . The activation of NF-B by these lipoproteins was inhibited by dominant negative (DN) constructs of TLR1 and DN TLR6. Thus, the lipoproteins from were found to activate NF-B through TLR1, TLR2 and TLR6. Furthermore, these lipoproteins possessed an ability to induce tumour necrosis factor-alpha (TNF-) in mouse peritoneal macrophages.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/016212-0
2008-05-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1318.html?itemId=/content/journal/micro/10.1099/mic.0.2007/016212-0&mimeType=html&fmt=ahah

References

  1. Akira, S. & Takeda, K. ( 2004; ). Toll-like receptor signaling. Nat Rev Immunol 4, 499–511.[CrossRef]
    [Google Scholar]
  2. Aliprantis, A. O., Yang, R. B., Mark, M. R., Suggett, S., Devaux, B., Radolf, J. D., Klimpel, G. R., Godowski, P. & Zychlinsky, A. ( 1999; ). Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285, 736–739.[CrossRef]
    [Google Scholar]
  3. Brightbill, H. D., Libraty, D. H., Krutzik, S. R., Yang, R. B., Belisle, J. T., Bleharski, J. R., Maitland, M., Norgard, M. V., Plevy, S. E. & other authors ( 1999; ). Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 285, 732–736.[CrossRef]
    [Google Scholar]
  4. Buwitt-Beckmann, U., Heine, H., Wiesmuller, K. H., Jung, G., Brock, R., Akira, S. & Ulmer, A. J. ( 2005; ). Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur J Immunol 35, 282–289.[CrossRef]
    [Google Scholar]
  5. Cassell, G. H., Waites, K. B., Gibbs, R. S. & Davis, J. K. ( 1986; ). Role of Ureaplasma urealyticum in amnionitis. Pediatr Infect Dis 5, S247–S252.[CrossRef]
    [Google Scholar]
  6. Chambaud, I., Wroblewski, H. & Blanchard, A. ( 1999; ). Interactions between mycoplasma lipoproteins and the host immune system. Trends Microbiol 7, 493–499.[CrossRef]
    [Google Scholar]
  7. De Silva, N. S. & Quinn, P. A. ( 1986; ). Endogenous activity of phospholipases A and C in Ureaplasma urealyticum. J Clin Microbiol 23, 354–359.
    [Google Scholar]
  8. Feng, S. H. & Lo, S. C. ( 1994; ). Induced mouse spleen B-cell proliferation and secretion of immunoglobulin by lipid-associated membrane proteins of Mycoplasma fermentans incognitus and Mycoplasma penetrans. Infect Immun 62, 3916–3921.
    [Google Scholar]
  9. Feng, S. H. & Lo, S. C. ( 1999; ). Lipid extract of Mycoplasma penetrans proteinase K-digested lipid-associated membrane proteins rapidly activates NF-κB and activator protein 1. Infect Immun 67, 2951–2956.
    [Google Scholar]
  10. Fraser, C. M., Gocayne, J. D., White, O., Adams, M. D., Clayton, R. A., Fleischmann, R. D., Bult, C. J., Kerlavage, A. R., Sutton, G. & other authors ( 1995; ). The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403.[CrossRef]
    [Google Scholar]
  11. Glass, J. I., Lefkowitz, E. J., Glass, J. S., Heiner, C. R., Chen, E. Y. & Cassell, G. H. ( 2000; ). The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature 407, 757–762.[CrossRef]
    [Google Scholar]
  12. Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M. & other authors ( 2001; ). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103.[CrossRef]
    [Google Scholar]
  13. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H. & other authors ( 2000; ). A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745.[CrossRef]
    [Google Scholar]
  14. Himmelreich, R., Hilbert, H., Plagens, H., Pirkl, E., Li, B. C. & Herrmann, R. ( 1996; ). Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 24, 4420–4449.[CrossRef]
    [Google Scholar]
  15. Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K. & Akira, S. ( 1999; ). Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162, 3749–3752.
    [Google Scholar]
  16. Jan, G., Brenner, C. & Wroblewski, H. ( 1996a; ). Purification of Mycoplasma gallisepticum membrane proteins p52, p67 (pMGA), and p77 by high-performance liquid chromatography. Protein Expr Purif 7, 160–166.[CrossRef]
    [Google Scholar]
  17. Jan, G., Fontenelle, C., Verrier, F., Le Henaff, M. & Wroblewski, H. ( 1996b; ). Selective acylation of plasma membrane proteins of Mycoplasma mycoides subsp. mycoides SC, the contagious bovine pleuropneumonia agent. Curr Microbiol 32, 38–42.[CrossRef]
    [Google Scholar]
  18. Jan, G., Le Henaff, M., Fontenelle, C. & Wroblewski, H. ( 2001; ). Biochemical and antigenic characterisation of Mycoplasma gallisepticum membrane proteins P52 and P67 (pMGA). Arch Microbiol 177, 81–90.[CrossRef]
    [Google Scholar]
  19. Jelsema, R. ( 2006; ). Ureaplasma associated preterm birth: is there a clinical application? Am J Obstet Gynecol 195, 1493–1494.
    [Google Scholar]
  20. Kataoka, S., Yamada, T., Chou, K., Nishida, R., Morikawa, M., Minami, M., Yamada, H., Sakuragi, N. & Minakami, H. ( 2006; ). Association between preterm birth and vaginal colonization by mycoplasmas in early pregnancy. J Clin Microbiol 44, 51–55.[CrossRef]
    [Google Scholar]
  21. Kopp, E. B. & Medzhitov, R. ( 1999; ). The Toll-receptor family and control of innate immunity. Curr Opin Immunol 11, 13–18.[CrossRef]
    [Google Scholar]
  22. Li, Y. H., Brauner, A., Jonsson, B., van der Ploeg, I., Soder, O., Holst, M., Jensen, J. S., Lagercrantz, H. & Tullus, K. ( 2000a; ). Ureaplasma urealyticum-induced production of proinflammatory cytokines by macrophages. Pediatr Res 48, 114–119.[CrossRef]
    [Google Scholar]
  23. Li, Y. H., Yan, Z. Q., Jensen, J. S., Tullus, K. & Brauner, A. ( 2000b; ). Activation of nuclear factor κB and induction of inducible nitric oxide synthase by Ureaplasma urealyticum in macrophages. Infect Immun 68, 7087–7093.[CrossRef]
    [Google Scholar]
  24. Lien, E., Sellati, T. J., Yoshimura, A., Flo, T. H., Rawadi, G., Finberg, R. W., Carroll, J. D., Espevik, T., Ingalls, R. R. & other authors ( 1999; ). Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 274, 33419–33425.[CrossRef]
    [Google Scholar]
  25. Ligon, J. V. & Kenny, G. E. ( 1991; ). Virulence of ureaplasmal urease for mice. Infect Immun 59, 1170–1171.
    [Google Scholar]
  26. Link, C., Gavioli, R., Ebensen, T., Canella, A., Reinhard, E. & Guzman, C. A. ( 2004; ). The Toll-like receptor ligand MALP-2 stimulates dendritic cell maturation and modulates proteasome composition and activity. Eur J Immunol 34, 899–907.[CrossRef]
    [Google Scholar]
  27. Maher, C. F., Haran, M. V., Farrell, D. J. & Cave, D. G. ( 1994; ). Ureaplasma urealyticum chorioamnionitis. Aust N Z J Obstet Gynaecol 34, 477–479.[CrossRef]
    [Google Scholar]
  28. Means, T. K., Lien, E., Yoshimura, A., Wang, S., Golenbock, D. T. & Fenton, M. J. ( 1999; ). The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol 163, 6748–6755.
    [Google Scholar]
  29. Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S. & Janeway, C. A., Jr ( 1998; ). MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2, 253–258.[CrossRef]
    [Google Scholar]
  30. Muhlradt, P. F., Kiess, M., Meyer, H., Sussmuth, R. & Jung, G. ( 1997; ). Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from Mycoplasma fermentans acting at picomolar concentration. J Exp Med 185, 1951–1958.[CrossRef]
    [Google Scholar]
  31. Muhlradt, P. F., Kiess, M., Meyer, H., Sussmuth, R. & Jung, G. ( 1998; ). Structure and specific activity of macrophage-stimulating lipopeptides from Mycoplasma hyorhinis. Infect Immun 66, 4804–4810.
    [Google Scholar]
  32. Ollikainen, J., Heiskanen-Kosma, T., Korppi, M., Katila, M. L. & Heinonen, K. ( 1998; ). Clinical relevance of Ureaplasma urealyticum colonization in preterm infants. Acta Paediatr 87, 1075–1078.[CrossRef]
    [Google Scholar]
  33. Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Huffel, C. V., Du, X., Birdwell, D., Alejos, E., Silva, M. & other authors ( 1998; ). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088.[CrossRef]
    [Google Scholar]
  34. Rharbaoui, F., Drabner, B., Borsutzky, S., Winckler, U., Morr, M., Ensoli, B., Muhlradt, P. F. & Guzman, C. A. ( 2002; ). The Mycoplasma-derived lipopeptide MALP-2 is a potent mucosal adjuvant. Eur J Immunol 32, 2857–2865.[CrossRef]
    [Google Scholar]
  35. Rharbaoui, F., Westendorf, A., Link, C., Felk, S., Buer, J., Gunzer, M. & Guzman, C. A. ( 2004; ). The Mycoplasma-derived macrophage-activating 2-kilodalton lipopeptide triggers global immune activation on nasal mucosa-associated lymphoid tissues. Infect Immun 72, 6978–6986.[CrossRef]
    [Google Scholar]
  36. Romero, F., Moreno, E., Ruiz-Bravo, A. & Jimenez-Valera, M. ( 2004; ). In vivo immunomodulation by Mycoplasma fermentans membrane lipoprotein. Curr Microbiol 48, 237–239.[CrossRef]
    [Google Scholar]
  37. Sasaki, Y., Ishikawa, J., Yamashita, A., Oshima, K., Kenri, T., Furuya, K., Yoshino, C., Horino, A., Shiba, T. & other authors ( 2002; ). The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res 30, 5293–5300.[CrossRef]
    [Google Scholar]
  38. Schelonka, R. L., Katz, B., Waites, K. B. & Benjamin, D. K., Jr ( 2005; ). Critical appraisal of the role of Ureaplasma in the development of bronchopulmonary dysplasia with metaanalytic techniques. Pediatr Infect Dis J 24, 1033–1039.[CrossRef]
    [Google Scholar]
  39. Shepard, M. C. ( 1954; ). The recovery of pleuropneumonia-like organisms from Negro men with and without nongonococcal urethritis. Am J Syph Gonorrhea Vener Dis 38, 113–124.
    [Google Scholar]
  40. Shibata, K., Hasebe, A., Into, T., Yamada, M. & Watanabe, T. ( 2000; ). The N-terminal lipopeptide of a 44-kDa membrane-bound lipoprotein of Mycoplasma salivarium is responsible for the expression of intercellular adhesion molecule-1 on the cell surface of normal human gingival fibroblasts. J Immunol 165, 6538–6544.[CrossRef]
    [Google Scholar]
  41. Shimizu, T., Kida, Y. & Kuwano, K. ( 2005; ). A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-κB through TLR1, TLR2, and TLR6. J Immunol 175, 4641–4646.[CrossRef]
    [Google Scholar]
  42. Shimizu, T., Kida, Y. & Kuwano, K. ( 2007; ). Triacylated lipoproteins derived from Mycoplasma pneumoniae activate NF-κB through TLR1 and TLR2. Immunology 121, 473–483.[CrossRef]
    [Google Scholar]
  43. Shimizu, T., Kida, Y. & Kuwano, K. ( 2008; ). Mycoplasma pneumoniae-derived lipopeptides induce acute inflammatory responses in the lungs of mice. Infect Immun 76, 270–277.[CrossRef]
    [Google Scholar]
  44. Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K. & Akira, S. ( 1999; ). Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11, 443–451.[CrossRef]
    [Google Scholar]
  45. Takeuchi, O., Kaufmann, A., Grote, K., Kawai, T., Hoshino, K., Morr, M., Muhlradt, P. F. & Akira, S. ( 2000; ). Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-like receptor 2- and MyD88-dependent signaling pathway. J Immunol 164, 554–557.[CrossRef]
    [Google Scholar]
  46. Takeuchi, O., Kawai, T., Muhlradt, P. F., Morr, M., Radolf, J. D., Zychlinsky, A., Takeda, K. & Akira, S. ( 2001; ). Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13, 933–940.[CrossRef]
    [Google Scholar]
  47. Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L. & Akira, S. ( 2002; ). Role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169, 10–14.[CrossRef]
    [Google Scholar]
  48. Taylor-Robinson, D. ( 1986; ). Evaluation of the role of Ureaplasma urealyticum in infertility. Pediatr Infect Dis 5, S262–S265.[CrossRef]
    [Google Scholar]
  49. Underhill, D. M., Ozinsky, A., Hajjar, A. M., Stevens, A., Wilson, C. B., Bassetti, M. & Aderem, A. ( 1999; ). The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815.[CrossRef]
    [Google Scholar]
  50. Waites, K. B., Crouse, D. T., Philips, J. B., III, Canupp, K. C. & Cassell, G. H. ( 1989; ). Ureaplasmal pneumonia and sepsis associated with persistent pulmonary hypertension of the newborn. Pediatrics 83, 79–85.
    [Google Scholar]
  51. Watson, H. L., Blalock, D. K. & Cassell, G. H. ( 1990; ). Variable antigens of Ureaplasma urealyticum containing both serovar-specific and serovar-cross-reactive epitopes. Infect Immun 58, 3679–3688.
    [Google Scholar]
  52. Weisburg, W. G., Tully, J. G., Rose, D. L., Petzel, J. P., Oyaizu, H., Yang, D., Mandelco, L., Sechrest, J., Lawrence, T. G. & other authors ( 1989; ). A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171, 6455–6467.
    [Google Scholar]
  53. Xu, C., Sun, G. F., Zhu, Y. F. & Wang, Y. F. ( 1997; ). The correlation of Ureaplasma urealyticum infection with infertility. Andrologia 29, 219–226.
    [Google Scholar]
  54. Yoon, B. H., Romero, R., Park, J. S., Chang, J. W., Kim, Y. A., Kim, J. C. & Kim, K. S. ( 1998; ). Microbial invasion of the amniotic cavity with Ureaplasma urealyticum is associated with a robust host response in fetal, amniotic, and maternal compartments. Am J Obstet Gynecol 179, 1254–1260.[CrossRef]
    [Google Scholar]
  55. Yoshino, K., Oshiro, N., Tokunaga, C. & Yonezawa, K. ( 2004; ). Mass spectrometry-based protein identification by correlation with sequence database. J Mass Spectrom Soc Jpn 52, 106–129.[CrossRef]
    [Google Scholar]
  56. Zheng, X., Watson, H. L., Waites, K. B. & Cassell, G. H. ( 1992; ). Serotype diversity and antigen variation among invasive isolates of Ureaplasma urealyticum from neonates. Infect Immun 60, 3472–3474.
    [Google Scholar]
  57. Zheng, X., Teng, L. J., Watson, H. L., Glass, J. I., Blanchard, A. & Cassell, G. H. ( 1995; ). Small repeating units within the Ureaplasma urealyticum MB antigen gene encode serovar specificity and are associated with antigen size variation. Infect Immun 63, 891–898.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/016212-0
Loading
/content/journal/micro/10.1099/mic.0.2007/016212-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error