1887

Abstract

Nectin-1, a member of the immunoglobulin superfamily, is a Ca-independent cell adhesion protein implicated in the organization of E-cadherin-based adherens junctions (AJs) and claudin-based tight junctions (TJs) in epithelial cells. Nectin-1 also regulates cell–cell adhesion and cell polarization in a Cdc42- and Rac-dependent manner. Western blot analyses demonstrated that accumulation of host nectin-1 is decreased by 85 % at 48 hours post-infection (h.p.i.) in serovar E-infected HeLa cells. Time-course experiments demonstrated that this decrease was sustained to 60 h.p.i. Nectin-1 downregulation in -infected cells was prevented by both chloramphenicol exposure and prior inactivation of the chlamydiae with UV light, demonstrating that active replication was required. Penicillin G-exposure studies demonstrated that nectin-1 accumulation was also altered during persistent infection. Finally, RT-PCR analyses indicated that chlamydial infection did not alter accumulation of any nectin-1 transcripts, demonstrating that nectin-1 accumulation is reduced at a post-transcriptional level. Intesrestingly, N-cadherin-dependent cell–cell junctions can be disrupted by infection, as reported by Prozialeck (2002) . Because interaction of nectin molecules on adjacent cells is essential for AJ formation, these data suggest that may disrupt AJs, at least in part, by diminishing nectin-1 accumulation. Notably, release of chlamydiae-infected epithelial cells has been observed both from polarized monolayers and from tissues, suggesting that chlamydia-modulated downregulation of adhesion molecules and the subsequent disruption of host cell adherence may be involved in chlamydial dissemination or pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015164-0
2008-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1290.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015164-0&mimeType=html&fmt=ahah

References

  1. Arno, J. N., Ricker, V. A., Batteiger, B. E., Katz, B. P., Caine, V. A. & Jones, R. B. ( 1990; ). Interferon-gamma in endocervical secretions of women infected with Chlamydia trachomatis. J Infect Dis 162, 1385–1389.[CrossRef]
    [Google Scholar]
  2. Balsara, Z. R., Misaghi, S., Lafave, J. N. & Starnbach, M. N. ( 2006; ). Chlamydia trachomatis infection induces cleavage of the mitotic cyclin B1. Infect Immun 74, 5602–5608.[CrossRef]
    [Google Scholar]
  3. Braga, V. M., Machesky, L. M., Hall, A. & Hotchin, N. A. ( 1997; ). The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell–cell contacts. J Cell Biol 137, 1421–1431.[CrossRef]
    [Google Scholar]
  4. Braga, V. M., Del Maschio, A., Machesky, L. & Dejana, E. ( 1999; ). Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol Biol Cell 10, 9–22.[CrossRef]
    [Google Scholar]
  5. Darville, T. ( 2000; ). Chlamydia spp. In Persistent Bacterial Infections, pp. 229–261. Edited by J. P. Nataro, M. J. Blazer and S. Cunningham-Rundles. Washington, DC: American Society for Microbiology.
  6. Dean, D. & Powers, V. C. ( 2001; ). Persistent Chlamydia trachomatis infections resist apoptotic stimuli. Infect Immun 69, 2442–2447.[CrossRef]
    [Google Scholar]
  7. Deka, S., Vanover, J., Dessus-Babus, S., Whittimore, J., Howett, M. K., Wyrick, P. B. & Schoborg, R. V. ( 2006; ). Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cell Microbiol 8, 149–162.[CrossRef]
    [Google Scholar]
  8. Deka, S., Vanover, J., Sun, J., Kintner, J., Whittimore, J. & Schoborg, R. V. ( 2007; ). An early event in the herpes simplex virus type-2 replication cycle is sufficient to induce Chlamydia trachomatis persistence. Cell Microbiol 9, 725–737.[CrossRef]
    [Google Scholar]
  9. Dong, F., Su, H., Huang, Y., Zhong, Y. & Zhong, G. ( 2004; ). Cleavage of host keratin 8 by a chlamydia-secreted protease. Infect Immun 72, 3863–3868.[CrossRef]
    [Google Scholar]
  10. Dong, F., Pirbhai, M., Xiao, Y., Zhong, Y., Wu, Y. & Zhong, G. ( 2005; ). Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis-infected cells. Infect Immun 73, 1861–1864.[CrossRef]
    [Google Scholar]
  11. Doughri, A. M., Storz, J. & Altera, K. P. ( 1972; ). Mode of entry and release of chlamydiae in infections of intestinal epithelial cells. J Infect Dis 126, 652–657.[CrossRef]
    [Google Scholar]
  12. Eissenberg, L. G., Wyrick, P. B., Davis, C. H. & Rumpp, J. W. ( 1983; ). Chlamydia psittaci elementary body envelopes: ingestion and inhibition of phagolysosome fusion. Infect Immun 40, 741–751.
    [Google Scholar]
  13. Etienne-Manneville, S. & Hall, A. ( 2002; ). Rho GTPases in cell biology. Nature 420, 629–635.[CrossRef]
    [Google Scholar]
  14. Fan, T., Lu, H., Hu, H., Shi, L., McClarty, G. A., Nance, D. M., Greenberg, A. H. & Zhong, G. ( 1998; ). Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 187, 487–496.[CrossRef]
    [Google Scholar]
  15. Farquhar, M. G. & Palade, G. E. ( 1963; ). Junctional complexes in various epithelia. J Cell Biol 17, 375–412.[CrossRef]
    [Google Scholar]
  16. Fischer, S. F., Vier, J., Kirschnek, S., Klos, A., Hess, S., Ying, S. & Hacker, G. ( 2004; ). Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins. J Exp Med 200, 905–916.[CrossRef]
    [Google Scholar]
  17. Geng, Y., Shane, R. B., Berencsi, K., Gonczol, E., Zaki, M. H., Margolis, D. J., Trinchieri, G. & Rook, A. H. ( 2000; ). Chlamydia pneumoniae inhibits apoptosis in human peripheral blood mononuclear cells through induction of IL-10. J Immunol 164, 5522–5529.[CrossRef]
    [Google Scholar]
  18. Gumbiner, B. M. ( 1996; ). Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357.[CrossRef]
    [Google Scholar]
  19. Hackstadt, T. ( 1999; ). Cell biology. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity, pp. 101–138. Edited by R. S. Stephens. Washington, DC: American Society for Microbiology.
  20. Hatch, T. ( 1999; ). Developmental biology. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity, pp. 29–67. Edited by R. S. Stephens. Washington, DC: American Society for Microbiology.
  21. Heuer, D., Brinkmann, V., Meyer, T. F. & Szczepek, A. J. ( 2003; ). Expression and translocation of chlamydial protease during acute and persistent infection of the epithelial HEp-2 cells with Chlamydophila (Chlamydia) pneumoniae. Cell Microbiol 5, 315–322.[CrossRef]
    [Google Scholar]
  22. Hogan, R. J., Mathews, S. A., Mukhopadhyay, S., Summersgill, J. T. & Timms, P. ( 2004; ). Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 72, 1843–1855.[CrossRef]
    [Google Scholar]
  23. Honda, T., Shimizu, K., Kawakatsu, T., Fukuhara, A., Irie, K., Nakamura, T., Matsuda, M. & Takai, Y. ( 2003; ). Cdc42 and Rac small G proteins activated by trans-interactions of nectins are involved in activation of c-Jun N-terminal kinase, but not in association of nectins and cadherin to form adherens junctions, in fibroblasts. Genes Cells 8, 481–491.[CrossRef]
    [Google Scholar]
  24. Jepson, M. A., Collares-Buzato, C. B., Clark, M. A., Hirst, B. H. & Simmons, N. L. ( 1995; ). Rapid disruption of epithelial barrier function by Salmonella typhimurium is associated with structural modification of intercellular junctions. Infect Immun 63, 356–359.
    [Google Scholar]
  25. Johnson, G. L. & Lapadat, R. ( 2002; ). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912.[CrossRef]
    [Google Scholar]
  26. Kane, C. D. & Byrne, G. I. ( 1998; ). Differential effects of gamma interferon on Chlamydia trachomatis growth in polarized and nonpolarized human epithelial cells in culture. Infect Immun 66, 2349–2351.
    [Google Scholar]
  27. Kawakatsu, T., Shimizu, K., Honda, T., Fukuhara, T., Hoshino, T. & Takai, Y. ( 2002; ). Trans-interactions of nectins induce formation of filopodia and lamellipodia through the respective activation of Cdc42 and Rac small G proteins. J Biol Chem 277, 50749–50755.[CrossRef]
    [Google Scholar]
  28. Lauffenburger, D. A. & Horwitz, A. F. ( 1996; ). Cell migration: a physically integrated molecular process. Cell 84, 359–369.[CrossRef]
    [Google Scholar]
  29. Lin, A. ( 2003; ). Activation of the JNK signaling pathway: breaking the brake on apoptosis. Bioessays 25, 17–24.[CrossRef]
    [Google Scholar]
  30. MacIntyre, A., Hammond, C. J., Little, C. S., Appelt, D. M. & Balin, B. J. ( 2002; ). Chlamydia pneumoniae infection alters the junctional complex proteins of human brain microvascular endothelial cells. FEMS Microbiol Lett 217, 167–172.[CrossRef]
    [Google Scholar]
  31. Majeed, M., Gustafsson, M., Kihlstrom, E. & Stendahl, O. ( 1993; ). Roles of Ca2+ and F-actin in intracellular aggregation of Chlamydia trachomatis in eucaryotic cells. Infect Immun 61, 1406–1414.
    [Google Scholar]
  32. Nelson, D. E., Virok, D. P., Wood, H., Roshick, C., Johnson, R. M., Whitmire, W. M., Crane, D. D., Steele-Mortimer, O., Kari, L. & other authors ( 2005; ). Chlamydial IFN-γ immune evasion is linked to host infection tropism. Proc Natl Acad Sci U S A 102, 10658–10663.[CrossRef]
    [Google Scholar]
  33. Pirbhai, M., Dong, F., Zhong, Y., Pan, K. Z. & Zhong, G. ( 2006; ). The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells. J Biol Chem 281, 31495–31501.[CrossRef]
    [Google Scholar]
  34. Prozialeck, W. C., Fay, M. J., Lamar, P. C., Pearson, C. A., Sigar, I. & Ramsey, K. H. ( 2002; ). Chlamydia trachomatis disrupts N-cadherin-dependent cell-cell junctions and sequesters β-catenin in human cervical epithelial cells. Infect Immun 70, 2605–2613.[CrossRef]
    [Google Scholar]
  35. Rajalingam, K., Al-Younes, H., Muller, A., Meyer, T. F., Szczepek, A. J. & Rudel, T. ( 2001; ). Epithelial cells infected with Chlamydophila pneumoniae (Chlamydia pneumoniae) are resistant to apoptosis. Infect Immun 69, 7880–7888.[CrossRef]
    [Google Scholar]
  36. Sakaguchi, T., Kohler, H., Gu, X., McCormick, B. A. & Reinecker, H. C. ( 2002; ). Shigella flexneri regulates tight junction-associated proteins in human intestinal epithelial cells. Cell Microbiol 4, 367–381.[CrossRef]
    [Google Scholar]
  37. Sakisaka, T. & Takai, Y. ( 2004; ). Biology and pathology of nectins and nectin-like molecules. Curr Opin Cell Biol 16, 513–521.[CrossRef]
    [Google Scholar]
  38. Sears, C. L. ( 2000; ). Molecular physiology and pathophysiology of tight junctions V. Assault of the tight junction by enteric pathogens. Am J Physiol Gastrointest Liver Physiol 279, G1129–G1134.
    [Google Scholar]
  39. Shaw, A. C., Vandahl, B. B., Larsen, M. R., Roepstorff, P., Gevaert, K., Vandekerckhove, J., Christiansen, G. & Birkelund, S. ( 2002; ). Characterization of a secreted Chlamydia protease. Cell Microbiol 4, 411–424.[CrossRef]
    [Google Scholar]
  40. Soloff, B. L., Rank, R. G. & Barron, A. L. ( 1985; ). Electron microscopic observations concerning the in vivo uptake and release of the agent of guinea-pig inclusion conjunctivitis (Chlamydia psittaci) in guinea-pig exocervix. J Comp Pathol 95, 335–344.[CrossRef]
    [Google Scholar]
  41. Struyf, F., Plate, A. E. & Spear, P. G. ( 2005; ). Deletion of the second immunoglobulin-like domain of nectin-1 alters its intracellular processing and localization and ability to mediate entry of herpes simplex virus. J Virol 79, 3841–3845.[CrossRef]
    [Google Scholar]
  42. Takai, Y. & Nakanishi, H. ( 2003; ). Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci 116, 17–27.[CrossRef]
    [Google Scholar]
  43. Takai, Y., Irie, K., Shimizu, K., Sakisaka, T. & Ikeda, W. ( 2003; ). Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci 94, 655–667.[CrossRef]
    [Google Scholar]
  44. Takaishi, K., Sasaki, T., Kotani, H., Nishioka, H. & Takai, Y. ( 1997; ). Regulation of cell-cell adhesion by Rac and Rho small G proteins in MDCK cells. J Cell Biol 139, 1047–1059.[CrossRef]
    [Google Scholar]
  45. Takeichi, M. ( 1995; ). Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7, 619–627.[CrossRef]
    [Google Scholar]
  46. Tam, J. E., Knight, S. T., Davis, C. H. & Wyrick, P. B. ( 1992; ). Eukaryotic cells grown on microcarrier beads offer a cost-efficient way to propagate Chlamydia trachomatis. Biotechniques 13, 374–378.
    [Google Scholar]
  47. Terres, A. M., Pajares, J. M., O'Toole, D., Ahern, S. & Kelleher, D. ( 1998; ). H. pylori infection is associated with downregulation of E-cadherin, a molecule involved in epithelial cell adhesion and proliferation control. J Clin Pathol 51, 410–412.[CrossRef]
    [Google Scholar]
  48. Tsukita, S. & Furuse, M. ( 1999; ). Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol 9, 268–273.[CrossRef]
    [Google Scholar]
  49. Van Aelst, L. & Symons, M. ( 2002; ). Role of Rho family GTPases in epithelial morphogenesis. Genes Dev 16, 1032–1054.[CrossRef]
    [Google Scholar]
  50. Wyrick, P. B. ( 2000; ). Intracellular survival by Chlamydia. Cell Microbiol 2, 275–282.[CrossRef]
    [Google Scholar]
  51. Wyrick, P. B., Choong, J., Davis, C. H., Knight, S. T., Royal, M. O., Maslow, A. S. & Bagnell, C. R. ( 1989; ). Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect Immun 57, 2378–2389.
    [Google Scholar]
  52. Wyrick, P. B., Gerbig, D. G., Jr, Knight, S. T. & Raulston, J. E. ( 1996; ). Accelerated development of genital Chlamydia trachomatis serovar E in McCoy cells grown on microcarrier beads. Microb Pathog 20, 31–40.[CrossRef]
    [Google Scholar]
  53. Xia, M., Bumgarner, R. E., Lampe, M. F. & Stamm, W. E. ( 2003; ). Chlamydia trachomatis infection alters host cell transcription in diverse cellular pathways. J Infect Dis 187, 424–434.[CrossRef]
    [Google Scholar]
  54. Ying, S., Seiffert, B. M., Hacker, G. & Fischer, S. F. ( 2005; ). Broad degradation of proapoptotic proteins with the conserved Bcl-2 homology domain 3 during infection with Chlamydia trachomatis. Infect Immun 73, 1399–1403.[CrossRef]
    [Google Scholar]
  55. Zhong, G., Fan, T. & Liu, L. ( 1999; ). Chlamydia inhibits interferon γ-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1. J Exp Med 189, 1931–1938.[CrossRef]
    [Google Scholar]
  56. Zhong, G., Liu, L., Fan, T., Fan, P. & Ji, H. ( 2000; ). Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon γ-inducible major histocompatibility complex class I expression in chlamydia-infected cells. J Exp Med 191, 1525–1534.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015164-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015164-0
Loading

Data & Media loading...

Supplements

[PDF file](15 KB)

PDF

[PDF file](3468 KB)

PDF

RT-PCR primers and positive control oligonucleotides [PDF file](48 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error