1887

Abstract

It is established that cells of , the causative agent of bubonic plague, excrete -aspartic acid at the expense of exogenous -glutamic acid during expression of the low-calcium response. Results of enzymic analysis provided here suggest that a previously defined deficiency of aspartase (AspA) accounts for this phenomenon rather than an elevated oxaloacetate pool. The only known distinction between most sequenced isolates of from and the active gene in (the immediate progenitor of ) is a single base transversion (G·C→T·A) causing replacement of leucine (encoded by UUG) for valine (encoded by GUG) at amino acid position 363. The gene from KIM possesses a unique second transversion (G·C→T·A) at amino acid 146 causing substitution of aspartic acid (encoded by GAU) with tyrosine (encoded by UAU). We show in this study that expresses as cross-reacting immunological material (CRIM). Functional and inactive of PB1 and KIM, respectively, were then cloned and expressed in AspA-deficient . After purification to near homogeneity, the products were subjected to biochemical analysis and found to exhibit similar secondary, tertiary and quaternary (tetrameric) structures as well as comparable Michaelis constants for -aspartic acid. However, the of the CRIM of strain KIM is only about 0.1 % of that determined for the active AspA of . Return of valine for leucine at position 363 of the enzyme restored normal turnover ( 86±2 s) provided that the amino acid substitution at position 146 was also reversed. These observations have important implications for understanding the nature of the stringent low-calcium response of and its role in promoting acute disease.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015529-0
2008-05-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1271.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015529-0&mimeType=html&fmt=ahah

References

  1. Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A. & Carniel, E. ( 1999; ). Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96, 14043–14048.[CrossRef]
    [Google Scholar]
  2. Baugh, C. L., Lanham, J. W. & Surgalla, M. ( 1964; ). Effects of bicarbonate on growth of Pasteurella pestis. II. Carbon dioxide fixation into oxalacetate by cell-free extracts. J Bacteriol 88, 1394–1398.
    [Google Scholar]
  3. Blattner, F. R., Plunkett, G., III, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K. & other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.[CrossRef]
    [Google Scholar]
  4. Brownlow, W. J. & Wessman, G. E. ( 1960; ). Nutrition of Pasteurella pestis in chemically defined media at temperatures of 36 to 38 C. J Bacteriol 79, 299–304.
    [Google Scholar]
  5. Brubaker, R. R. ( 1991; ). Factors promoting acute and chronic diseases caused by yersiniae. Clin Microbiol Rev 4, 309–324.
    [Google Scholar]
  6. Brubaker, R. R. ( 2005; ). Influence of Na+, dicarboxylic amino acids, and pH in modulating the low-calcium response of Yersinia pestis. Infect Immun 73, 4743–4752.[CrossRef]
    [Google Scholar]
  7. Brubaker, R. R. ( 2007; ). Intermediary metabolism, Na+, the low calcium-response, and acute disease. In The Genus Yersinia: from Genomics to Function, pp. 116–129. Edited by R. D. Perry. New York: Springer.
  8. Brubaker, R. R., Beesley, E. D. & Surgalla, M. J. ( 1965; ). Pasteurella pestis: role of pesticin I and iron in experimental plague. Science 149, 422–424.[CrossRef]
    [Google Scholar]
  9. Burrows, T. W. & Bacon, G. W. ( 1960; ). V and W antigens in strains of Pasteurella pseudotuberculosis. Br J Exp Pathol 41, 38–44.
    [Google Scholar]
  10. Chain, P. S., Carniel, E., Larimer, F. W., Lamerdin, J., Stoutland, P. O., Regala, W. M., Georgescu, A. M., Vergez, L. M., Land, M. L. & other authors ( 2004; ). Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101, 13826–13831.[CrossRef]
    [Google Scholar]
  11. Chain, P. S. G., Hu, P., Malfatti, S. A., Radnedge, L., Larimer, F., Vergez, L. M., Worsham, P., Chu, M. C. & Andersen, G. L. ( 2006; ). Complete genome sequence of Yersinia pestis strains Antiqua and Nepal516: evidence of gene reduction in an emerging pathogen. J Bacteriol 188, 4453–4463.[CrossRef]
    [Google Scholar]
  12. Delwiche, E. A., Fukui, G. M., Andrews, A. W. & Surgalla, M. J. ( 1959; ). Environmental conditions affecting the population dynamics and the retention of virulence of Pasteurella pestis: the role of carbon dioxide. J Bacteriol 77, 355–380.
    [Google Scholar]
  13. Deng, W., Burland, V., Plunkett, G. I., III, Boutin, A., Mayhew, G. F., Liss, P., Perna, N. T., Rose, D. J., Mau, B. & other authors ( 2002; ). Genome sequence of Y. pestis KIM. J Bacteriol 184, 4601–4611.[CrossRef]
    [Google Scholar]
  14. Devignat, R. ( 1951; ). Variétés de l'espèce Pasteurella pestis. Nouvelle hypothèse. Bull World Health Organ 4, 247–263.
    [Google Scholar]
  15. Dreyfus, L. A. & Brubaker, R. R. ( 1978; ). Consequences of aspartase deficiency in Yersinia pestis. J Bacteriol 136, 757–764.
    [Google Scholar]
  16. Fan, Z., Luo, Y., Wang, S., Jin, L., Zhou, X., Liu, J., Zhang, Y. & Li, F. ( 1995; ). Microtus brandti plague in the Xilin Gol Grassland was inoffensive to humans. Chin J Control Endemic Dis 10, 56–57 (in Chinese).
    [Google Scholar]
  17. Ferber, D. M. & Brubaker, R. R. ( 1981; ). Plasmids in Yersinia pestis. Infect Immun 31, 839–841.
    [Google Scholar]
  18. Finegold, M. J., Petery, R. F., Berendt, R. F. & Adams, H. R. ( 1968; ). Studies on the pathogenesis of plague. Blood coagulation and tissue responses of Macaca mulatta following exposure to aerosols of Pasteurella pestis. Am J Pathol 53, 99–114.
    [Google Scholar]
  19. Fowler, J. M. & Brubaker, R. R. ( 1994; ). Physiological basis of the low calcium response in Yersinia pestis. Infect Immun 62, 5234–5241.
    [Google Scholar]
  20. Grallert, H., Rutkat, K. & Buchner, J. ( 1998; ). GroEL traps dimeric and monomeric unfolding intermediates of citrate synthase. J Biol Chem 273, 33305–33310.[CrossRef]
    [Google Scholar]
  21. Guest, J. R., Roberts, R. E. & Wilde, R. J. ( 1984; ). Cloning of the aspartase gene (aspA) of Escherichia coli. J Gen Microbiol 130, 1271–1278.
    [Google Scholar]
  22. Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C. G., Ohtsubo, E., Nakayama, K. & other authors ( 2001; ). Complete genome sequence of enterohemorrhagic Escherichia coli O157 : H7 and genomic comparison with a laboratory strain K-12. DNA Res 8, 11–22.[CrossRef]
    [Google Scholar]
  23. Higuchi, K. & Smith, J. L. ( 1961; ). Studies on the nutrition and physiology of Pasteurella pestis: VI. A differential plating medium for the estimation of the mutation rate to avirulence. J Bacteriol 81, 605–608.
    [Google Scholar]
  24. Hu, P., Elliott, J., McCready, P., Skowronski, E., Garnes, J., Kobayashi, A., Brubaker, R. R. & Garcia, E. ( 1998; ). Structural organization of virulence-associated plasmids of Yersinia pestis. J Bacteriol 180, 5192–5202.
    [Google Scholar]
  25. Jayasekera, M. M. & Viola, R. E. ( 1999; ). Recovery of catalytic activity from an inactive aggregated mutant of l-aspartase. Biochem Biophys Res Commun 264, 596–600.[CrossRef]
    [Google Scholar]
  26. Jayasekera, M. M. K., Shi, W., Farber, G. K. & Viola, R. E. ( 1997; ). Evaluation of functionally important amino acids in l-aspartate ammonia-lyase from Escherichia coli. Biochemistry 36, 9145–9150.[CrossRef]
    [Google Scholar]
  27. Karsten, W. E., Hunsley, J. R. & Viola, R. E. ( 1985; ). Purification of aspartase and aspartokinase-homoserine dehydrogenase I from Escherichia coli by dye-ligand chromatography. Anal Biochem 147, 336–341.[CrossRef]
    [Google Scholar]
  28. Kawahara, K., Tsukano, H., Watanabe, H., Lindler, B. & Matsuura, M. ( 2002; ). Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun 70, 4092–4098.[CrossRef]
    [Google Scholar]
  29. Kukkonen, M., Suomalainen, M., Kyllonen, P., Lahteenmaki, K., Lang, H., Virkola, R., Helander, I., Holst, O. & Korhonen, T. ( 2004; ). Lack of O-antigen is essential for plasminogen activation by Yersinia pestis and Salmonella enterica. Mol Microbiol 51, 215–225.
    [Google Scholar]
  30. Kutyrev, V. V., Popov, Y. A. & Protsenko, O. A. ( 1986; ). Pathogenicity plasmids of the plague microbe (Yersinia pestis). Mol Gen Mikrobiol Virusol 6, 3–11.
    [Google Scholar]
  31. Langer, M., Reck, G., Reed, J. & Rétey, J. ( 1994; ). Identification of serine-143 as the most likely precursor of dehydroalanine in the active site of histidine ammonia-lyase. A study of the overexpressed enzyme by site-directed mutagenesis. Biochemistry 33, 6462–6467.[CrossRef]
    [Google Scholar]
  32. Mehigh, R. J. & Brubaker, R. R. ( 1993; ). Major stable peptides of Yersinia pestis synthesized during the low-calcium response. Infect Immun 61, 13–22.
    [Google Scholar]
  33. Mortlock, R. P. ( 1962; ). Gluconate metabolism of Pasteurella pestis. J Bacteriol 84, 53–59.
    [Google Scholar]
  34. Mortlock, R. P. & Brubaker, R. R. ( 1962; ). Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities of Pasteurella pestis and Pasteurella pseudotuberculosis. J Bacteriol 84, 1122–1123.
    [Google Scholar]
  35. Motin, V. L., Nakajima, R., Smirvov, G. B. & Brubaker, R. R. ( 1994; ). Passive immunity to yersiniae mediated by anti-recombinant V antigen and protein A-V antigen fusion peptide. Infect Immun 62, 4192–4201.
    [Google Scholar]
  36. Motin, V. L., Georgescu, A. M., Fitch, J. P., Gu, P. P., Nelson, D. O., Mabery, S. L., Garnham, J. B., Sokhansanj, B. A., Ott, L. L. & other authors ( 2004; ). Temporal global changes in gene expression during temperature transition in Yersinia pestis. J Bacteriol 186, 6298–6305.[CrossRef]
    [Google Scholar]
  37. Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C. & other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  38. Perry, R. D. & Fetherston, J. D. ( 1997; ). Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev 10, 35–66.
    [Google Scholar]
  39. Rosqvist, R., Skurnik, M. & Wolf-Watz, H. ( 1988; ). Increased virulence of Yersinia pseudotuberculosis by two independent mutations. Nature 334, 522–525.[CrossRef]
    [Google Scholar]
  40. Schuster, B. & Rétey, J. ( 1995; ). The mechanism of action of phenylalanine ammonia-lyase: the role of prosthetic dehydroalanine. Proc Natl Acad Sci U S A 92, 8433–8437.[CrossRef]
    [Google Scholar]
  41. Shi, W. X., Dunbar, J. L., Jayasekera, M. M., Viola, R. E. & Farber, G. K. ( 1997; ). The structure of l-aspartate ammonia-lyase from Escherichia coli. Biochemistry 36, 9136–9144.[CrossRef]
    [Google Scholar]
  42. Sodeinde, O. A., Subrahmanyam, Y. V. B. K., Stark, K., Quan, T., Bao, Y. & Goguen, J. D. ( 1992; ). A surface protease and the invasive character of plague. Science 258, 1004–1007.[CrossRef]
    [Google Scholar]
  43. Srere, P. A. ( 1969; ). Citrate synthase. Methods Enzymol 13, 3–11.
    [Google Scholar]
  44. Surgalla, M. J. & Beesley, E. D. ( 1969; ). Congo red-agar plating medium for detecting pigmentation in Pasteurella pestis. Appl Microbiol 18, 834–837.
    [Google Scholar]
  45. Surgalla, M. J., Andrews, A. W. & Baugh, C. L. ( 1964; ). Effects of bicarbonate on growth of Pasteurella pestis. I. Differential response of virulent and avirulent cells. J Bacteriol 88, 269–272.
    [Google Scholar]
  46. Thal, E. & Knapp, W. ( 1971; ). A revised antigenic scheme of Yersinia pseudotuberculosis. Symp Ser Immunobiol Stand 15, 219–222.
    [Google Scholar]
  47. Une, T. & Brubaker, R. R. ( 1984; ). Roles of V antigen in promoting virulence and immunity in yersiniae. J Immunol 133, 2226–2230.
    [Google Scholar]
  48. Watanabe, Y., Iwakura, M., Tokushige, M. & Eguchi, G. ( 1981; ). Studies on aspartase. VII. Subunit arrangement of Escherichia coli aspartase. Biochim Biophys Acta 661, 261–266.[CrossRef]
    [Google Scholar]
  49. Weaver, T. M. & Banaszak, L. J. ( 1996; ). Crystallographic studies of the catalytic and a second site in fumarase C from Escherichia coli. Biochemistry 35, 13955–13965.[CrossRef]
    [Google Scholar]
  50. Weaver, T. M., Levitt, D. G., Donnelly, M. I., Wilkens-Stevens, P. P. & Banaszak, L. J. ( 1995; ). The multisubunit active site of fumarase C from Escherichia coli. Nat Struct Biol 2, 654–662.[CrossRef]
    [Google Scholar]
  51. Yellin, T. O. & Wriston, J. C. ( 1966; ). Purification and properties of guinea pig serum asparaginase. Biochemistry 5, 1605 [CrossRef]
    [Google Scholar]
  52. Zhou, D., Tong, Z., Song, Y., Han, Y., Pei, D., Pang, X., Zhai, J., Li, M., Cui, B. & other authors ( 2004; ). Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol 186, 5147–5152.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015529-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015529-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error