-
Volume 92,
Issue 7,
2011
Volume 92, Issue 7, 2011
- Animal
-
- RNA viruses
-
-
Comparative complete genome analysis of dengue virus type 3 circulating in India between 2003 and 2008
More LessDengue is endemic in most parts of the tropics including India. So far, complete genome information for Indian dengue isolates is not available. In the present study, we characterized the genome of three dengue type 3 viruses isolated from India. The genomes of all three viruses were found to be 10 707 bp long with an ORF encoding 3390 aa. Extensive molecular phylogenetic analysis based on comparison of the complete genome and envelope gene classified the recent Indian viruses into genotype III (lineage III), revealing a shift of lineage from lineage V. The sequence analysis revealed several non-conservative changes in major structural proteins. This study clearly indicates that the genotype III (lineage III) dengue type 3 viruses have been continuously circulating in major parts of India since 2003 and are responsible for the recent major outbreaks all over India. This is the first extensive study on complete genome analysis of dengue type 3 viruses in India.
-
-
-
An amino acid substitution (V3I) in the Japanese encephalitis virus NS4A protein increases its virulence in mice, but not its growth rate in vitro
Our previous studies have shown that the Japanese encephalitis virus (JEV) strain Mie/40/2004 is the most virulent of the strains isolated by us in Japan from 2002 to 2004. Comparison of the amino acid sequence of Mie/40/2004 with those of low-virulence strains revealed that an isoleucine residue at position 3 of the Mie/40/2004 NS4A protein may increase viral pathogenicity. A recombinant virus with a single valine-to-isoleucine substitution (V3I) at position 3 in the low-virulence Mie/41/2002 background (rJEV-Mie41-NS4AV3I) exhibited increased virulence in mice compared with the Mie/41/2002 parent strain. The V3I mutation did not affect virus growth in several cell lines. These results demonstrate that the isoleucine at position 3 in the NS4A protein of Mie/40/2004 is responsible for its high virulence in vivo. This is the first report to show that an amino acid substitution in a flavivirus NS4A protein alters viral pathogenicity in mice.
-
-
-
Crystal structures of murine norovirus-1 RNA-dependent RNA polymerase
Norovirus is one of the leading agents of gastroenteritis and is a major public health concern. In this study, the crystal structures of recombinant RNA-dependent RNA polymerase (RdRp) from murine norovirus-1 (MNV-1) and its complex with 5-fluorouracil (5FU) were determined at 2.5 Å resolution. Crystals with C2 symmetry revealed a dimer with half a dimer in the asymmetrical unit, and the protein exists predominantly as a monomer in solution, in equilibrium with a smaller population of dimers, trimers and hexamers. MNV-1 RdRp exhibited polymerization activity with a right-hand fold typical of polynucleotide polymerases. The metal ion modelled in close proximity to the active site was found to be coordinated tetrahedrally to the carboxyl groups of aspartate clusters. The orientation of 5FU observed in three molecules in the asymmetrical unit was found to be slightly different, but it was stabilized by a network of favourable interactions with the conserved active-site residues Arg185, Asp245, Asp346, Asp347 and Arg395. The information gained on the structural and functional features of MNV-1 RdRp will be helpful in understanding replication of norovirus and in designing novel therapeutic agents against this important pathogen.
-
-
-
Hepatitis E virus in Italy: molecular analysis of travel-related and autochthonous cases
Human hepatitis E virus (HEV) is considered an emerging pathogen in industrialized countries. The aim of the present study was to contribute to the body of knowledge available on the molecular epidemiology of acute hepatitis E in Italy. Three sets of HEV-specific primers targeting the ORF1 and ORF2 were used to examine serum samples collected from acute hepatitis patients positive for anti-HEV IgG and/or IgM, between 2007 and 2010. Seventeen patients (39.5 %) tested HEV RNA-positive: 12 infections, due to genotype 1, were associated with travel to endemic areas (Bangladesh, India and Pakistan), while five infections, due to genotype 3, were presumably autochthonous. Risk factors identified in this group included exposure to raw seafood, pork liver sausages and wild boar. Results from the present study confirm that human HEV infection in Italy is caused by different genotypes, depending on whether the infection is travel-related or autochthonous.
-
-
-
Cellular cap-binding proteins associate with influenza virus mRNAs
More LessThe influenza virus RNA polymerase synthesizes three types of RNA: genomic vRNA, anti-genomic cRNA and mRNA. Both vRNA and cRNA are bound by the viral RNA polymerase and nucleoprotein to form ribonucleoprotein complexes. Viral mRNAs are also proposed to be bound by the RNA polymerase to prevent their endonucleolytic cleavage, regulate the splicing of M1 mRNA, and facilitate translation. Here, we used standard immunoprecipitation, biochemical purification and RNA immunoprecipitation assays to investigate the association of viral and host factors with viral mRNA. We found that viral mRNA associates with the viral non-structural protein 1 (NS1), cellular poly(A)-binding protein 1 (PABP1), the 20 kDa subunit NCBP1 of the nuclear cap-binding complex (CBC), the RNA and export factor-binding protein REF/Aly and the translation initiation factor eIF4E. However, our data suggest that the RNA polymerase might not form part of the viral messenger ribonucleoprotein (mRNP) complex. We propose a model in which viral mRNAs, by associating with cellular cap-binding proteins, follow the pathways normally used by cellular mRNAs for splicing, nuclear export and translation.
-
-
-
NS1-mediated delay of type I interferon induction contributes to influenza A virulence in ferrets
More LessInterference of the influenza A virus non-structural protein NS1 with type I interferon (IFN) signalling has been characterized extensively in vitro. To assess the contribution of NS1 to the virulence of a specific strain, we generated recombinant USSR/90/77 viruses bearing the NS1 proteins of the attenuated strain PR/8/34 or the highly pathogenic strain 1918 ‘Spanish flu’, all belonging to the H1N1 subtype. In vitro, the extent of interference with type I IFN production exerted by the different NS1 proteins correlated with the reported virulence of the respective strain. Infection of ferrets with the recombinant viruses revealed that the presence of the 1918 NS1 resulted in a slightly more severe disease with generally higher clinical scores and increased lung pathology. Analysis of mRNA from nasal wash cells revealed that viruses carrying the 1918 and, to a lesser extent, USSR/90/77 NS1 proteins caused a delay in upregulation of type I IFNs compared with the NS1 PR/8/34-expressing virus, demonstrating the importance of NS1 for early host-response control and virulence.
-
-
-
The nucleoprotein and matrix protein segments of H5N1 influenza viruses are responsible for dominance in embryonated eggs
Since their emergence in 1996 in southern China, highly pathogenic H5N1 avian influenza viruses have spread widely and continue to circulate in some countries. Genetic reassortment has created multiple H5N1 virus lineages, some of which are dominant in nature. However, the mechanism by which certain H5N1 influenza virus lineages (or genotypes) become dominant in avian species remains unknown. Here, we used competitive inoculation and genetic analysis of the resultant viruses to show that the nucleoprotein (NP) and matrix protein (M) segments of Fujian-like viruses (clade 2.3.4), which became predominant in southern China in mid-2006, are responsible for viral dominance in embryonated eggs. We further found that specific residues in the NP and M proteins play key roles in conferring this viral dominance; specifically, a glutamic acid at position 66 in M2 was conserved among the Fujian-like viruses. These results suggest roles for these viral proteins in influenza virus dominance.
-
-
-
Influence of PB2 host-range determinants on the intranuclear mobility of the influenza A virus polymerase
More LessAvian influenza A viruses often do not propagate efficiently in mammalian cells. The viral polymerase protein PB2 is important for this host restriction, with amino-acid polymorphisms at residue 627 and other positions acting as ‘signatures’ of avian- or human-adapted viruses. Restriction is hypothesized to result from differential interactions (either positive or inhibitory) with unidentified cellular factors. We applied fluorescence recovery after photobleaching (FRAP) to investigate the mobility of the viral polymerase in the cell nucleus using A/PR/8/34 and A/Turkey/England/50-92/91 as model strains. As expected, transcriptional activity of a polymerase with the avian PB2 protein was strongly dependent on the identity of residue 627 in human but not avian cells, and this correlated with significantly slower diffusion of the inactive polymerase in human but not avian nuclei. In contrast, the activity and mobility of the PR8 polymerase was affected much less by residue 627. Sequence comparison followed by mutagenic analyses identified residues at known host-range-specific positions 271, 588 and 701 as well as a novel determinant at position 636 as contributors to host-specific activity of both PR8 and Turkey PB2 proteins. Furthermore, the correlation between poor transcriptional activity and slow diffusional mobility was maintained. However, activity did not obligatorily correlate with predicted surface charge of the 627 domain. Overall, our data support the hypothesis of a host nuclear factor that interacts with the viral polymerase and modulates its activity. While we cannot distinguish between positive and inhibitory effects, the data have implications for how such factors might operate.
-
-
-
Long-term impairment of Streptococcus pneumoniae lung clearance is observed after initial infection with influenza A virus but not human metapneumovirus in mice
More LessHuman metapneumovirus (hMPV) is a paramyxovirus responsible for respiratory tract infections in humans. Our objective was to investigate whether hMPV could predispose to long-term bacterial susceptibility, such as previously observed with influenza viruses. BALB/c mice were infected with hMPV or influenza A and, 14 days following viral infection, challenged with Streptococcus pneumoniae. Only mice previously infected with influenza A demonstrated an 8 % weight loss of their body weight 72 h following S. pneumoniae infection, which correlated with an enhanced lung bacterial replication of >7 log10 compared with pneumococcus infection alone. This enhanced bacterial replication was not related to altered macrophage or neutrophil recruitment or deficient production of critical cytokines. However, bacterial challenge induced the production of gamma interferon in bronchoalveolar lavages of influenza-infected mice, but not in those of hMPV-infected animals. In conclusion, hMPV does not cause long-term impairment of pneumococcus lung clearance, in contrast to influenza A virus.
-
-
-
Effects of N-linked glycosylation of the fusion protein on replication of human metapneumovirus in vitro and in mouse lungs
More LessThe fusion (F) protein is an important membrane glycoprotein necessary for cellular entry and replication of human metapneumovirus (hMPV). Selective prevention of N-linked glycosylation may compromise the catalytic and fusion functions of the F protein. By using site-directed mutagenesis and reverse genetics, recombinant mutant viruses lacking one or two N-linked glycosylation sites in the F protein were constructed. M1, which lacked glycosylation at position 57 of the F protein, had slightly compromised replication, whereas M2 and M4, which lacked glycosylation at position(s) 172 or 57 and 172, respectively, showed profound impairment of replication when compared with wild-type (WT) NL/1/00–GFP virus in both Vero E6 cells and mouse lungs. M2 was less fit than WT virus in vitro and in immunocompromised mouse lungs. The F proteins of WT and mutant viruses were similarly expressed on the infected cell membrane, while the activated fusion protein subunits, F1 of M2 and M4, were produced in lower quantities compared with those of WT and M1 virus. The mutated viruses lacking N-linked glycosylation at position 353, either individually or together with other sites, could not be recovered. Thus, N-linked glycosylation may be involved in the catalysis of the fusion protein from F0 to F1 and F2, which is critical for fusion function. Strategies targeting N-linked glycosylation may be helpful for developing attenuated live vaccines or antiviral drugs for hMPV.
-
-
-
Genomic and phylogenetic characterization of Leanyer virus, a novel orthobunyavirus isolated in northern Australia
Leanyer virus (LEAV), currently classified as a member of the genus Orthobunyavirus, in the family Bunyaviridae, was originally isolated from a pool of Anopheles meraukensis mosquitoes, collected at Leanyer, Northern Territory, Australia in 1974. When it failed to react in serological tests with antisera from other known viruses, full-length genomic sequencing was pursued to determine the relationship of LEAV to other orthobunyavirus species. Genetic and serological characterization confirmed its antigenic distance from other orthobunyaviruses, including to its closest genetic neighbours, the Simbu group viruses, suggesting that it may represent a new antigenic complex.
-
-
-
The PI3K/Akt pathway is involved in early infection of some exogenous avian leukosis viruses
More LessAvian leukosis virus (ALV) is an enveloped and oncogenic retrovirus. Avian leukosis caused by the members of ALV subgroups A, B and J has become one of the major problems challenging the poultry industry in China. However, the cellular factors such as signal transduction pathways involved in ALV infection are not well defined. In this study, our data demonstrated that ALV-J strain NX0101 infection in primary chicken embryo fibroblasts or DF-1 cells was correlated with the activity and phosphorylation of Akt. Akt activation was initiated at a very early stage of infection independently of NX0101 replication. The specific phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 or wortmannin could suppress Akt phosphorylation, indicating that NX0101-induced Akt phosphorylation is PI3K-dependent. ALV-A strain GD08 or ALV-B strain CD08 infection also demonstrated a similar profile of PI3K/Akt activation. Treatment of DF-1 cells with the drug 5-(N, N-hexamethylene) amiloride that inhibits the activity of chicken Na+/H+ exchanger type 1 significantly reduced Akt activation induced by NX0101, but not by GD08 and CD08. Akt activation triggered by GD08 or CD08 was abolished by clathrin-mediated endocytosis inhibitor chlorpromazine. Receptor-mediated endocytosis inhibitor dansylcadaverine had a negligible effect on all ALV-induced Akt phosphorylation. Moreover, viral replication of ALV was suppressed by LY294002 in a dose-dependent manner, which was due to the inhibition of virus infection by LY294002. These data suggest that the activation of the PI3K/Akt signalling pathway by exogenous ALV infection plays an important role in viral entry, yet the precise mechanism remains under further investigation.
-
-
-
High-resolution phylogenetics and phylogeography of human immunodeficiency virus type 1 subtype C epidemic in South America
Human immunodeficiency virus type 1 subtype C (HIV-1C) represents 30–65 % of HIV infections in southern Brazil, and isolated cases of HIV-1C infection have also been reported in Argentina, Uruguay, Paraguay and Venezuela. Phylogenetic studies have suggested that the Brazilian subtype C epidemic was initiated by the introduction of closely related strains. Nevertheless, because of sampling limitations, the point of entry and the timing of subtype C introduction into Brazil, as well as the origin of the founder lineage, remain controversial. The present study investigated the origin, spread and phylogeography of HIV-1C in South America. Phylogenetic analysis showed a well-supported monophyletic clade including all available strains from Brazil, Uruguay and Argentina. Only one lineage from Venezuela was unrelated to the epidemic involving the other three countries. Molecular clock and likelihood mapping analysis showed that HIV-1C introduction in Brazil dated back to the period 1960–1970, much earlier than previously thought, and was followed by a nearly simultaneous star-like outburst of viral lineages, indicating a subsequent rapid spread. Phylogeographic patterns suggested Paraná or Rio Grande do Sul as the possible entrance points of subtype C and an asymmetrical gene flow from Paraná to Sao Paulo, Santa Catarina and Rio Grande do Sul, as well as from Rio Grande do Sul to Sao Paulo fostered by the strong inter-connectivity between population centres in southern Brazil. The study illustrates how coupling phylogeography inference with geographical information system data is critical to understand the origin and dissemination of viral pathogens and potentially predict their future spread.
-
-
-
DNA-dependent protein kinase interacts functionally with the RNA polymerase II complex recruited at the human immunodeficiency virus (HIV) long terminal repeat and plays an important role in HIV gene expression
More LessDNA-dependent protein kinase (DNA-PK), a nuclear protein kinase that specifically requires association with DNA for its kinase activity, plays important roles in the regulation of different DNA transactions, including transcription, replication and DNA repair, as well as in the maintenance of telomeres. Due to its large size, DNA-PK is also known to facilitate the activities of other factors by providing the docking platform at their site of action. In this study, by running several chromatin immunoprecipitation assays, we demonstrate the parallel distribution of DNA-PK with RNA polymerase II (RNAP II) along the human immunodeficiency virus (HIV) provirus before and after activation with tumour necrosis factor alpha. The association between DNA-PK and RNAP II is also long-lasting, at least for up to 4 h (the duration analysed in this study). Knockdown of endogenous DNA-PK using specific small hairpin RNAs expressed from lentiviral vectors resulted in significant reduction in HIV gene expression and replication, demonstrating the importance of DNA-PK for HIV gene expression. Sequence analysis of the HIV-1 Tat protein revealed three potential target sites for phosphorylation by DNA-PK and, by using kinase assays, we confirmed that Tat is an effective substrate of DNA-PK. Through peptide mapping, we found that two of these three potential phosphorylation sites are recognized and phosphorylated by DNA-PK. Mutational studies on the DNA-PK target sites of Tat further demonstrated the functional significance of the Tat–DNA-PK interaction. Thus, overall our results clearly demonstrate the functional interaction between DNA-PK and RNAP II during HIV transcription.
-
-
-
Sequence similarities of the capsid gene of Chilean and European isolates of infectious pancreatic necrosis virus point towards a common origin
More LessThe Chilean salmonid industry was developed by importing breeding materials, a practice still in effect due to deficits in the national supply of roe. Importation of breeding materials is often associated with the transmission of pathogens. The objectives of this study were to compare the infectious pancreatic necrosis virus (IPNV) isolates from Chile to those of European origin and to determine the diversity of the Chilean IPNV. The VP2 genes of IPNV from Chilean fish (whose eggs originated from Scotland, Iceland and Norway) were compared to isolates from fish in Norway and Ireland. The results show that the isolates are identical (97–99 %) and cluster into one genogroup. Our findings support previous reports of association between the trade-in breeding materials and transmission of pathogens. Furthermore, our results demonstrate the genotypic diversity of Chilean IPNV isolates. These findings have important implications for IPNV disease diagnosis and control in Chile.
-
- DNA viruses
-
-
Generation of neutralizing aptamers against herpes simplex virus type 2: potential components of multivalent microbicides
More LessThe prophylactic use of topical antiviral agents has recently been validated by the reduction in human immunodeficiency virus (HIV) type 1 infection incidence seen using tonofovir-containing microbicides. In order to develop a wide-spectrum microbicide to prevent infection with a wide range of sexually transmitted viruses, we have previously reported the development of HIV-neutralizing aptamers and here report the isolation and characterization of aptamers that neutralize herpes simplex virus type 2 (HSV-2). These aptamers bind the envelope glycoprotein (gD), are potent (IC50 of 20–50 nM) and are able to block infection pathways dependent on both major entry receptors, Nectin1 and HVEM. Structural analysis and mutagenesis of these aptamers reveal a core specificity element that could provide the basis for pharmaceutical development. As HSV-2 is a major risk factor for the acquisition of HIV-1, a microbicide capable of preventing HSV-2 infection would not only reduce the morbidity associated with HSV-2, but also that derived from HIV-1.
-
-
-
Genotypic characterization of two bacterial artificial chromosome clones derived from a single DNA source of the very virulent gallid herpesvirus-2 strain C12/130
More LessThe identification of specific genetic changes associated with differences in the pathogenicity of Marek's disease virus strains (GaHV-2) has been a formidable task due to the large number of mutations in mixed-genotype populations within DNA preparations. Very virulent UK isolate C12/130 induces extensive lymphoid atrophy, neurological manifestations and early mortality in young birds. We have recently reported the construction of several independent full-length bacterial artificial chromosome (BAC) clones of C12/130 capable of generating fully infectious viruses with significant differences in their pathogenicity profiles. Two of these clones (vC12/130-10 and vC12/130-15), which showed differences in virulence relative to each other and to the parental strain, had similar replication kinetics both in vitro and in vivo in spite of the fact that vC12/130-15 was attenuated. To investigate the possible reasons for this, the nucleotide sequences of both clones were determined. Sequence analysis of the two genomes identified mutations within eight genes. A single 494 bp insertion was identified within the genome of the virulent vC12/130-10 clone. Seven non-synonymous substitutions distinguished virulent vC12/130-10 from that of attenuated vC12/130-15. By sequencing regions of parental DNA that differed between the two BAC clones, we confirmed that C12/130 does contain these mutations in varying proportions. Since the individual reconstituted BAC clones were functionally attenuated in vivo and derived from a single DNA source of phenotypically very virulent C12/130, this suggests that the C12/130 virus population exists as a collection of mixed genotypes.
-
-
-
Characterization of specific antibodies against cytomegalovirus (CMV)-encoded interleukin 10 produced by 28 % of CMV-seropositive blood donors
More LessCytomegalovirus (CMV) has evolved multiple immunological evasion strategies, including the encoding of viral interleukin (IL)-10 homologues (cmvIL-10). In this study, cmvIL-10 bound avidly to the same receptors on blood mononuclear cells and was as bio-potent as native human IL-10. Seventeen percent of plasma samples from 3200 Danish blood donors (corresponding to 28 % of the anti-CMV IgG-positive donors) contained substantial levels of anti-cmvIL-10 IgG antibodies, as measured by a radioimmunoassay for human anti-cmvIL-10 antibodies. The antibodies neither cross-reacted with native human IL-10 nor with Epstein–Barr virus-encoded IL-10. Anti-cmvIL-10 antibodies potently inhibited the binding of cmvIL-10 to cellular receptors, and they specifically inhibited cmvIL-10-induced JAK–STAT signalling. Ultimately, anti-cmvIL-10 antibodies blocked the inhibitory effect of cmvIL-10 on lipopolysaccharide-induced tumour necrosis factor alpha and IL-1β from blood mononuclear cells. Taken together, our data signify that cmvIL-10 has been produced during CMV infection, and that anti-cmvIL-10 IgG antibodies represent an effective immunological counter reaction against cmvIL-10.
-
-
-
Recruitment of cyclin-dependent kinase 9 to nuclear compartments during cytomegalovirus late replication: importance of an interaction between viral pUL69 and cyclin T1
Cyclin-dependent protein kinases (CDKs) are important regulators of cellular processes and are functionally integrated into the replication of human cytomegalovirus (HCMV). Recently, a regulatory impact of CDK activity on the viral mRNA export factor pUL69 was shown. Here, specific aspects of the mode of interaction between CDK9/cyclin T1 and pUL69 are described. Intracellular localization was studied in the presence of a novel selective CDK9 inhibitor, R22, which exerts anti-cytomegaloviral activity in vitro. A pronounced R22-induced formation of nuclear speckled aggregation of pUL69 was demonstrated. Multi-labelling confocal laser-scanning microscopy revealed that CDK9 and cyclin T1 co-localized perfectly with pUL69 in individual speckles. The effects were similar to those described recently for the broad CDK inhibitor roscovitine. Co-immunoprecipitation and yeast two-hybrid analyses showed that cyclin T1 interacted with both CDK9 and pUL69. The interaction region of pUL69 for cyclin T1 could be attributed to aa 269–487. Moreover, another component of CDK inhibitor-induced speckled aggregates was identified with RNA polymerase II, supporting earlier reports that strongly suggested an association of pUL69 with transcription complexes. Interestingly, when using a UL69-deleted recombinant HCMV, no speckled aggregates were formed by CDK inhibitor treatment. This indicated that pUL69 is the defining component of aggregates and generally may represent a crucial viral interactor of cyclin T1. In conclusion, these data emphasize that HCMV inter-regulation with CDK9/cyclin T1 is at least partly based on a pUL69–cylin T1 interaction, thus contributing to the importance of CDK9 for HCMV replication.
-
-
-
Human cytomegalovirus immediate-early gene expression is restricted by the nuclear domain 10 component Sp100
More LessNuclear domains 10 (ND10s) are discrete subnuclear structures that contain the three major protein components promyelocytic leukaemia protein (PML), hDaxx and Sp100. Previous studies identified the ND10-components PML and hDaxx as cellular restriction factors that independently counteract human cytomegalovirus (HCMV) infection via the repression of viral immediate-early (IE) gene expression. Consequently, we asked whether Sp100 is likewise involved in this repressive activity. Infection of Sp100 knockdown (kd) cells with HCMV resulted in a significantly increased plaque-forming ability. In addition, ablation of Sp100 led to a considerable increase in the number of IE1-expressing cells, indicating that Sp100 suppresses the initiation of viral gene expression. Next, double-kd cells, lacking either Sp100/hDaxx or Sp100/PML, were generated. Here, infection resulted in an additional enhancement in HCMV replication efficacy compared with the single-kd cells. Thus, our results further strengthen the concept that the three major ND10-components independently contribute to the cellular restriction of HCMV replication.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
![Loading](/images/jp/spinner.gif)