1887

Abstract

Norovirus is one of the leading agents of gastroenteritis and is a major public health concern. In this study, the crystal structures of recombinant RNA-dependent RNA polymerase (RdRp) from murine norovirus-1 (MNV-1) and its complex with 5-fluorouracil (5FU) were determined at 2.5 Å resolution. Crystals with C2 symmetry revealed a dimer with half a dimer in the asymmetrical unit, and the protein exists predominantly as a monomer in solution, in equilibrium with a smaller population of dimers, trimers and hexamers. MNV-1 RdRp exhibited polymerization activity with a right-hand fold typical of polynucleotide polymerases. The metal ion modelled in close proximity to the active site was found to be coordinated tetrahedrally to the carboxyl groups of aspartate clusters. The orientation of 5FU observed in three molecules in the asymmetrical unit was found to be slightly different, but it was stabilized by a network of favourable interactions with the conserved active-site residues Arg185, Asp245, Asp346, Asp347 and Arg395. The information gained on the structural and functional features of MNV-1 RdRp will be helpful in understanding replication of norovirus and in designing novel therapeutic agents against this important pathogen.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031104-0
2011-07-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/7/1607.html?itemId=/content/journal/jgv/10.1099/vir.0.031104-0&mimeType=html&fmt=ahah

References

  1. Belliot G., Sosnovtsev S. V., Chang K. O., Babu V., Uche U., Arnold J. J., Cameron C. E., Green K. Y.. ( 2005;). Norovirus proteinase-polymerase and polymerase are both active forms of RNA-dependent RNA polymerase. . J Virol 79:, 2393–2403. [CrossRef].[PubMed].
    [Google Scholar]
  2. Biswal B. K., Cherney M. M., Wang M., Chan L., Yannopoulos C. G., Bilimoria D., Nicolas O., Bedard J., James M. N.. ( 2005;). Crystal structures of the RNA-dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by non-nucleoside inhibitors. . J Biol Chem 280:, 18202–18210. [CrossRef].[PubMed].
    [Google Scholar]
  3. Choi K. H., Groarke J. M., Young D. C., Kuhn R. J., Smith J. L., Pevear D. C., Rossmann M. G.. ( 2004;). The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. . Proc Natl Acad Sci U S A 101:, 4425–4430. [CrossRef].[PubMed].
    [Google Scholar]
  4. Daughenbaugh K. F., Fraser C. S., Hershey J. W., Hardy M. E.. ( 2003;). The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. . EMBO J 22:, 2852–2859. [CrossRef].[PubMed].
    [Google Scholar]
  5. Emsley P., Cowtan K.. ( 2004;). Coot: model-building tools for molecular graphics. . Acta Crystallogr D Biol Crystallogr 60:, 2126–2132. [CrossRef].[PubMed].
    [Google Scholar]
  6. Ferrer-Orta C., Arias A., Pérez-Luque R., Escarmís C., Domingo E., Verdaguer N.. ( 2007;). Sequential structures provide insights into the fidelity of RNA replication. . Proc Natl Acad Sci U S A 104:, 9463–9468. [CrossRef].[PubMed].
    [Google Scholar]
  7. Green K. Y.. ( 2007;). Caliciviruses: the noroviruses. . In Fields Virology, , 5th edn., pp. 949–979. Edited by Howley P. M., Knipe D. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E... Philadelphia & London:: Wolters Kluwer Health/Lippincott Williams & Wilkins;.
    [Google Scholar]
  8. Han K. R., Choi Y., Min B. S., Jeong H., Cheon D., Kim J., Jee Y., Shin S., Yang J. M.. ( 2010;). Murine norovirus-1 3Dpol exhibits RNA-dependent RNA polymerase activity and nucleotidylylates on Tyr of the VPg. . J Gen Virol 91:, 1713–1722. [CrossRef].[PubMed].
    [Google Scholar]
  9. Högbom M., Jäger K., Robel I., Unge T., Rohayem J.. ( 2009;). The active form of the norovirus RNA-dependent RNA polymerase is a homodimer with cooperative activity. . J Gen Virol 90:, 281–291. [CrossRef].[PubMed].
    [Google Scholar]
  10. Karst S. M., Wobus C. E., Lay M., Davidson J., Virgin H. W. IV. ( 2003;). STAT1-dependent innate immunity to a Norwalk-like virus. . Science 299:, 1575–1578. [CrossRef].[PubMed].
    [Google Scholar]
  11. Lambden P. R., Caul E. O., Ashley C. R., Clarke I. N.. ( 1993;). Sequence and genome organization of a human small round-structured (Norwalk-like) virus. . Science 259:, 516–519. [CrossRef].[PubMed].
    [Google Scholar]
  12. Lee B., Richards F. M.. ( 1971;). The interpretation of protein structures: estimation of static accessibility. . J Mol Biol 55:, 379–400. [CrossRef].[PubMed].
    [Google Scholar]
  13. Lo Conte L., Chothia C., Janin J.. ( 1999;). The atomic structure of protein-protein recognition sites. . J Mol Biol 285:, 2177–2198. [CrossRef].[PubMed].
    [Google Scholar]
  14. Lyle J. M., Bullitt E., Bienz K., Kirkegaard K.. ( 2002;). Visualization and functional analysis of RNA-dependent RNA polymerase lattices. . Science 296:, 2218–2222. [CrossRef].[PubMed].
    [Google Scholar]
  15. Machín A., Martín Alonso J. M., Parra F.. ( 2001;). Identification of the amino acid residue involved in rabbit hemorrhagic disease virus VPg uridylylation. . J Biol Chem 276:, 27787–27792. [CrossRef].[PubMed].
    [Google Scholar]
  16. Murshudov G. N., Vagin A. A., Dodson E. J.. ( 1997;). Refinement of macromolecular structures by the maximum-likelihood method. . Acta Crystallogr D Biol Crystallogr 53:, 240–255. [CrossRef].[PubMed].
    [Google Scholar]
  17. Ng K. K., Cherney M. M., Vazquez A. L., Machin A., Alonso J. M., Parra F., James M. N.. ( 2002;). Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase. . J Biol Chem 277:, 1381–1387. [CrossRef].[PubMed].
    [Google Scholar]
  18. Ng K. K., Pendás-Franco N., Rojo J., Boga J. A., Machín A., Alonso J. M., Parra F.. ( 2004;). Crystal structure of norwalk virus polymerase reveals the carboxyl terminus in the active site cleft. . J Biol Chem 279:, 16638–16645. [CrossRef].[PubMed].
    [Google Scholar]
  19. Ng K. K., Arnold J. J., Cameron C. E.. ( 2008;). Structure-function relationships among RNA-dependent RNA polymerases. . Curr Top Microbiol Immunol 320:, 137–156. [CrossRef].[PubMed].
    [Google Scholar]
  20. Niepmann M., Zheng J.. ( 2006;). Discontinuous native protein gel electrophoresis. . Electrophoresis 27:, 3949–3951. [CrossRef].[PubMed].
    [Google Scholar]
  21. O'Reilly E. K., Kao C. C.. ( 1998;). Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. . Virology 252:, 287–303. [CrossRef].[PubMed].
    [Google Scholar]
  22. Otwinowski Z., Minor W.. ( 1997;). Processing of X-ray diffraction data collected in oscillation mode. . Methods Enzymol 276:, 307–326.
    [Google Scholar]
  23. Phan T. G., Kaneshi K., Ueda Y., Nakaya S., Nishimura S., Yamamoto A., Sugita K., Takanashi S., Okitsu S., Ushijima H.. ( 2007;). Genetic heterogeneity, evolution, and recombination in noroviruses. . J Med Virol 79:, 1388–1400. [CrossRef].[PubMed].
    [Google Scholar]
  24. Rohayem J., Jäger K., Robel I., Scheffler U., Temme A., Rudolph W.. ( 2006;). Characterization of norovirus 3Dpol RNA-dependent RNA polymerase activity and initiation of RNA synthesis. . J Gen Virol 87:, 2621–2630. [CrossRef].[PubMed].
    [Google Scholar]
  25. Sosnovtsev S. V., Belliot G., Chang K. O., Prikhodko V. G., Thackray L. B., Wobus C. E., Karst S. M., Virgin H. W., Green K. Y.. ( 2006;). Cleavage map and proteolytic processing of the murine norovirus nonstructural polyprotein in infected cells. . J Virol 80:, 7816–7831. [CrossRef].[PubMed].
    [Google Scholar]
  26. Thackray L. B., Wobus C. E., Chachu K. A., Liu B., Alegre E. R., Henderson K. S., Kelley S. T., Virgin H. W. IV. ( 2007;). Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. . J Virol 81:, 10460–10473. [CrossRef].[PubMed].
    [Google Scholar]
  27. Vázquez A. L., Alonso J. M., Parra F.. ( 2000;). Mutation analysis of the GDD sequence motif of a calicivirus RNA-dependent RNA polymerase. . J Virol 74:, 3888–3891. [CrossRef].[PubMed].
    [Google Scholar]
  28. Vo N. V., Tuler J. R., Lai M. M.. ( 2004;). Enzymatic characterization of the full-length and C-terminally truncated hepatitis C virus RNA polymerases: function of the last 21 amino acids of the C terminus in template binding and RNA synthesis. . Biochemistry 43:, 10579–10591. [CrossRef].[PubMed].
    [Google Scholar]
  29. Wobus C. E., Karst S. M., Thackray L. B., Chang K. O., Sosnovtsev S. V., Belliot G., Krug A., Mackenzie J. M., Green K. Y., Virgin H. W.. ( 2004;). Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. . PLoS Biol 2:, e432. [CrossRef].[PubMed].
    [Google Scholar]
  30. Wobus C. E., Thackray L. B., Virgin H. W. IV. ( 2006;). Murine norovirus: a model system to study norovirus biology and pathogenesis. . J Virol 80:, 5104–5112. [CrossRef].[PubMed].
    [Google Scholar]
  31. Zamyatkin D. F., Parra F., Alonso J. M., Harki D. A., Peterson B. R., Grochulski P., Ng K. K.. ( 2008;). Structural insights into mechanisms of catalysis and inhibition in Norwalk virus polymerase. . J Biol Chem 283:, 7705–7712. [CrossRef].[PubMed].
    [Google Scholar]
  32. Zamyatkin D. F., Parra F., Machín A., Grochulski P., Ng K. K.. ( 2009;). Binding of 2′-amino-2′-deoxycytidine-5′-triphosphate to norovirus polymerase induces rearrangement of the active site. . J Mol Biol 390:, 10–16. [CrossRef].[PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.031104-0
Loading
/content/journal/jgv/10.1099/vir.0.031104-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1607 - 1616

Sequence alignment of MNV-1, HNV, RHDV and Sapporo virus RdRp.

Primers used in this study.

[PDF file of Supplementary Figure and Table](533 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error