Skip to content
1887

Abstract

Nuclear domains 10 (ND10s) are discrete subnuclear structures that contain the three major protein components promyelocytic leukaemia protein (PML), hDaxx and Sp100. Previous studies identified the ND10-components PML and hDaxx as cellular restriction factors that independently counteract human cytomegalovirus (HCMV) infection via the repression of viral immediate-early (IE) gene expression. Consequently, we asked whether Sp100 is likewise involved in this repressive activity. Infection of Sp100 knockdown (kd) cells with HCMV resulted in a significantly increased plaque-forming ability. In addition, ablation of Sp100 led to a considerable increase in the number of IE1-expressing cells, indicating that Sp100 suppresses the initiation of viral gene expression. Next, double-kd cells, lacking either Sp100/hDaxx or Sp100/PML, were generated. Here, infection resulted in an additional enhancement in HCMV replication efficacy compared with the single-kd cells. Thus, our results further strengthen the concept that the three major ND10-components independently contribute to the cellular restriction of HCMV replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.030981-0
2011-07-01
2025-01-14
Loading full text...

Full text loading...

References

  1. Andreoni M., Faircloth M., Vugler L., Britt W. J. 1989; A rapid microneutralization assay for the measurement of neutralizing antibody reactive with human cytomegalovirus. J Virol Methods 23:157–167 [View Article][PubMed]
    [Google Scholar]
  2. Bieniasz P. D. 2004; Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5:1109–1115 [View Article][PubMed]
    [Google Scholar]
  3. Cantrell S. R., Bresnahan W. A. 2006; Human cytomegalovirus (HCMV) UL82 gene product (pp71) relieves hDaxx-mediated repression of HCMV replication. J Virol 80:6188–6191 [View Article][PubMed]
    [Google Scholar]
  4. Cuchet D., Sykes A., Nicolas A., Orr A., Murray J., Sirma H., Heeren J., Bartelt A., Everett R. D. 2011; PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication. J Cell Sci 124:280–291 [View Article][PubMed]
    [Google Scholar]
  5. de la Hoz R. E., Stephens G., Sherlock C. 2002; Diagnosis and treatment approaches of CMV infections in adult patients. J Clin Virol 25:Suppl. 2S1–S12 [View Article][PubMed]
    [Google Scholar]
  6. Dent A. L., Yewdell J., Puvion-Dutilleul F., Koken M. H., de The H., Staudt L. M. 1996; LYSP100-associated nuclear domains (LANDs): description of a new class of subnuclear structures and their relationship to PML nuclear bodies. Blood 88:1423–1426[PubMed]
    [Google Scholar]
  7. Everett R. D., Chelbi-Alix M. K. 2007; PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89:819–830 [View Article][PubMed]
    [Google Scholar]
  8. Everett R. D., Rechter S., Papior P., Tavalai N., Stamminger T., Orr A. 2006; PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 80:7995–8005 [View Article][PubMed]
    [Google Scholar]
  9. Everett R. D., Parada C., Gripon P., Sirma H., Orr A. 2008; Replication of ICP0-null mutant herpes simplex virus type 1 is restricted by both PML and Sp100. J Virol 82:2661–2672 [View Article][PubMed]
    [Google Scholar]
  10. Guldner H. H., Szostecki C., Grötzinger T., Will H. 1992; IFN enhance expression of Sp100, an autoantigen in primary biliary cirrhosis. J Immunol 149:4067–4073[PubMed]
    [Google Scholar]
  11. Guldner H. H., Szostecki C., Schröder P., Matschl U., Jensen K., Lüders C., Will H., Sternsdorf T. 1999; Splice variants of the nuclear dot-associated Sp100 protein contain homologies to HMG-1 and a human nuclear phosphoprotein-box motif. J Cell Sci 112:733–747[PubMed]
    [Google Scholar]
  12. Ishov A. M., Sotnikov A. G., Negorev D., Vladimirova O. V., Neff N., Kamitani T., Yeh E. T., Strauss J. F. III, Maul G. G. 1999; PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147:221–234 [View Article][PubMed]
    [Google Scholar]
  13. Lavau C., Marchio A., Fagioli M., Jansen J., Falini B., Lebon P., Grosveld F., Pandolfi P. P., Pelicci P. G., Dejean A. 1995; The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene 11:871–876[PubMed]
    [Google Scholar]
  14. Marschall M., Freitag M., Weiler S., Sorg G., Stamminger T. 2000; Recombinant green fluorescent protein-expressing human cytomegalovirus as a tool for screening antiviral agents. Antimicrob Agents Chemother 44:1588–1597 [View Article][PubMed]
    [Google Scholar]
  15. Negorev D. G., Vladimirova O. V., Maul G. G. 2009; Differential functions of interferon-upregulated Sp100 isoforms: herpes simplex virus type 1 promoter-based immediate-early gene suppression and PML protection from ICP0-mediated degradation. J Virol 83:5168–5180 [View Article][PubMed]
    [Google Scholar]
  16. Preston C. M., Nicholl M. J. 2006; Role of the cellular protein hDaxx in human cytomegalovirus immediate-early gene expression. J Gen Virol 87:1113–1121 [View Article][PubMed]
    [Google Scholar]
  17. Saffert R. T., Kalejta R. F. 2006; Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression. J Virol 80:3863–3871 [View Article][PubMed]
    [Google Scholar]
  18. Seeler J. S., Marchio A., Losson R., Desterro J. M., Hay R. T., Chambon P., Dejean A. 2001; Common properties of nuclear body protein SP100 and TIF1alpha chromatin factor: role of SUMO modification. Mol Cell Biol 21:3314–3324 [View Article][PubMed]
    [Google Scholar]
  19. Stadler M., Chelbi-Alix M. K., Koken M. H., Venturini L., Lee C., Saïb A., Quignon F., Pelicano L., Guillemin M. C. et al. 1995; Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 11:2565–2573[PubMed]
    [Google Scholar]
  20. Stuurman N., de Graaf A., Floore A., Josso A., Humbel B., de Jong L., van Driel R. 1992; A monoclonal antibody recognizing nuclear matrix-associated nuclear bodies. J Cell Sci 101:773–784[PubMed]
    [Google Scholar]
  21. Szostecki C., Guldner H. H., Netter H. J., Will H. 1990; Isolation and characterization of cDNA encoding a human nuclear antigen predominantly recognized by autoantibodies from patients with primary biliary cirrhosis. J Immunol 145:4338–4347[PubMed]
    [Google Scholar]
  22. Tavalai N., Stamminger T. 2008; New insights into the role of the subnuclear structure ND10 for viral infection. Biochim Biophys Acta 1783:2207–2221 [View Article][PubMed]
    [Google Scholar]
  23. Tavalai N., Stamminger T. 2010; Intrinsic cellular defense mechanisms targeting human cytomegalovirus. Virus Res (In Press) [View Article][PubMed]
    [Google Scholar]
  24. Tavalai N., Papior P., Rechter S., Leis M., Stamminger T. 2006; Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections. J Virol 80:8006–8018 [View Article][PubMed]
    [Google Scholar]
  25. Tavalai N., Papior P., Rechter S., Stamminger T. 2008; Nuclear domain 10 components promyelocytic leukemia protein and hDaxx independently contribute to an intrinsic antiviral defense against human cytomegalovirus infection. J Virol 82:126–137 [View Article][PubMed]
    [Google Scholar]
  26. Van Damme E., Laukens K., Dang T. H., Van Ostade X. 2010; A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 6:51–67[PubMed] [CrossRef]
    [Google Scholar]
  27. Woodhall D. L., Groves I. J., Reeves M. B., Wilkinson G., Sinclair J. H. 2006; Human Daxx-mediated repression of human cytomegalovirus gene expression correlates with a repressive chromatin structure around the major immediate early promoter. J Biol Chem 281:37652–37660 [View Article][PubMed]
    [Google Scholar]
  28. Zhong S., Müller S., Ronchetti S., Freemont P. S., Dejean A., Pandolfi P. P. 2000; Role of SUMO-1-modified PML in nuclear body formation. Blood 95:2748–2752[PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.030981-0
Loading
/content/journal/jgv/10.1099/vir.0.030981-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error