1887

Abstract

Nuclear domains 10 (ND10s) are discrete subnuclear structures that contain the three major protein components promyelocytic leukaemia protein (PML), hDaxx and Sp100. Previous studies identified the ND10-components PML and hDaxx as cellular restriction factors that independently counteract human cytomegalovirus (HCMV) infection via the repression of viral immediate-early (IE) gene expression. Consequently, we asked whether Sp100 is likewise involved in this repressive activity. Infection of Sp100 knockdown (kd) cells with HCMV resulted in a significantly increased plaque-forming ability. In addition, ablation of Sp100 led to a considerable increase in the number of IE1-expressing cells, indicating that Sp100 suppresses the initiation of viral gene expression. Next, double-kd cells, lacking either Sp100/hDaxx or Sp100/PML, were generated. Here, infection resulted in an additional enhancement in HCMV replication efficacy compared with the single-kd cells. Thus, our results further strengthen the concept that the three major ND10-components independently contribute to the cellular restriction of HCMV replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.030981-0
2011-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/7/1532.html?itemId=/content/journal/jgv/10.1099/vir.0.030981-0&mimeType=html&fmt=ahah

References

  1. Andreoni M., Faircloth M., Vugler L., Britt W. J. 1989; A rapid microneutralization assay for the measurement of neutralizing antibody reactive with human cytomegalovirus. J Virol Methods 23:157–167 [View Article][PubMed]
    [Google Scholar]
  2. Bieniasz P. D. 2004; Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5:1109–1115 [View Article][PubMed]
    [Google Scholar]
  3. Cantrell S. R., Bresnahan W. A. 2006; Human cytomegalovirus (HCMV) UL82 gene product (pp71) relieves hDaxx-mediated repression of HCMV replication. J Virol 80:6188–6191 [View Article][PubMed]
    [Google Scholar]
  4. Cuchet D., Sykes A., Nicolas A., Orr A., Murray J., Sirma H., Heeren J., Bartelt A., Everett R. D. 2011; PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication. J Cell Sci 124:280–291 [View Article][PubMed]
    [Google Scholar]
  5. de la Hoz R. E., Stephens G., Sherlock C. 2002; Diagnosis and treatment approaches of CMV infections in adult patients. J Clin Virol 25:Suppl. 2S1–S12 [View Article][PubMed]
    [Google Scholar]
  6. Dent A. L., Yewdell J., Puvion-Dutilleul F., Koken M. H., de The H., Staudt L. M. 1996; LYSP100-associated nuclear domains (LANDs): description of a new class of subnuclear structures and their relationship to PML nuclear bodies. Blood 88:1423–1426[PubMed]
    [Google Scholar]
  7. Everett R. D., Chelbi-Alix M. K. 2007; PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89:819–830 [View Article][PubMed]
    [Google Scholar]
  8. Everett R. D., Rechter S., Papior P., Tavalai N., Stamminger T., Orr A. 2006; PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 80:7995–8005 [View Article][PubMed]
    [Google Scholar]
  9. Everett R. D., Parada C., Gripon P., Sirma H., Orr A. 2008; Replication of ICP0-null mutant herpes simplex virus type 1 is restricted by both PML and Sp100. J Virol 82:2661–2672 [View Article][PubMed]
    [Google Scholar]
  10. Guldner H. H., Szostecki C., Grötzinger T., Will H. 1992; IFN enhance expression of Sp100, an autoantigen in primary biliary cirrhosis. J Immunol 149:4067–4073[PubMed]
    [Google Scholar]
  11. Guldner H. H., Szostecki C., Schröder P., Matschl U., Jensen K., Lüders C., Will H., Sternsdorf T. 1999; Splice variants of the nuclear dot-associated Sp100 protein contain homologies to HMG-1 and a human nuclear phosphoprotein-box motif. J Cell Sci 112:733–747[PubMed]
    [Google Scholar]
  12. Ishov A. M., Sotnikov A. G., Negorev D., Vladimirova O. V., Neff N., Kamitani T., Yeh E. T., Strauss J. F. III, Maul G. G. 1999; PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147:221–234 [View Article][PubMed]
    [Google Scholar]
  13. Lavau C., Marchio A., Fagioli M., Jansen J., Falini B., Lebon P., Grosveld F., Pandolfi P. P., Pelicci P. G., Dejean A. 1995; The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene 11:871–876[PubMed]
    [Google Scholar]
  14. Marschall M., Freitag M., Weiler S., Sorg G., Stamminger T. 2000; Recombinant green fluorescent protein-expressing human cytomegalovirus as a tool for screening antiviral agents. Antimicrob Agents Chemother 44:1588–1597 [View Article][PubMed]
    [Google Scholar]
  15. Negorev D. G., Vladimirova O. V., Maul G. G. 2009; Differential functions of interferon-upregulated Sp100 isoforms: herpes simplex virus type 1 promoter-based immediate-early gene suppression and PML protection from ICP0-mediated degradation. J Virol 83:5168–5180 [View Article][PubMed]
    [Google Scholar]
  16. Preston C. M., Nicholl M. J. 2006; Role of the cellular protein hDaxx in human cytomegalovirus immediate-early gene expression. J Gen Virol 87:1113–1121 [View Article][PubMed]
    [Google Scholar]
  17. Saffert R. T., Kalejta R. F. 2006; Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression. J Virol 80:3863–3871 [View Article][PubMed]
    [Google Scholar]
  18. Seeler J. S., Marchio A., Losson R., Desterro J. M., Hay R. T., Chambon P., Dejean A. 2001; Common properties of nuclear body protein SP100 and TIF1alpha chromatin factor: role of SUMO modification. Mol Cell Biol 21:3314–3324 [View Article][PubMed]
    [Google Scholar]
  19. Stadler M., Chelbi-Alix M. K., Koken M. H., Venturini L., Lee C., Saïb A., Quignon F., Pelicano L., Guillemin M. C. et al. 1995; Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 11:2565–2573[PubMed]
    [Google Scholar]
  20. Stuurman N., de Graaf A., Floore A., Josso A., Humbel B., de Jong L., van Driel R. 1992; A monoclonal antibody recognizing nuclear matrix-associated nuclear bodies. J Cell Sci 101:773–784[PubMed]
    [Google Scholar]
  21. Szostecki C., Guldner H. H., Netter H. J., Will H. 1990; Isolation and characterization of cDNA encoding a human nuclear antigen predominantly recognized by autoantibodies from patients with primary biliary cirrhosis. J Immunol 145:4338–4347[PubMed]
    [Google Scholar]
  22. Tavalai N., Stamminger T. 2008; New insights into the role of the subnuclear structure ND10 for viral infection. Biochim Biophys Acta 1783:2207–2221 [View Article][PubMed]
    [Google Scholar]
  23. Tavalai N., Stamminger T. 2010; Intrinsic cellular defense mechanisms targeting human cytomegalovirus. Virus Res (In Press) [View Article][PubMed]
    [Google Scholar]
  24. Tavalai N., Papior P., Rechter S., Leis M., Stamminger T. 2006; Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections. J Virol 80:8006–8018 [View Article][PubMed]
    [Google Scholar]
  25. Tavalai N., Papior P., Rechter S., Stamminger T. 2008; Nuclear domain 10 components promyelocytic leukemia protein and hDaxx independently contribute to an intrinsic antiviral defense against human cytomegalovirus infection. J Virol 82:126–137 [View Article][PubMed]
    [Google Scholar]
  26. Van Damme E., Laukens K., Dang T. H., Van Ostade X. 2010; A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 6:51–67[PubMed] [CrossRef]
    [Google Scholar]
  27. Woodhall D. L., Groves I. J., Reeves M. B., Wilkinson G., Sinclair J. H. 2006; Human Daxx-mediated repression of human cytomegalovirus gene expression correlates with a repressive chromatin structure around the major immediate early promoter. J Biol Chem 281:37652–37660 [View Article][PubMed]
    [Google Scholar]
  28. Zhong S., Müller S., Ronchetti S., Freemont P. S., Dejean A., Pandolfi P. P. 2000; Role of SUMO-1-modified PML in nuclear body formation. Blood 95:2748–2752[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.030981-0
Loading
/content/journal/jgv/10.1099/vir.0.030981-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error