1887

Abstract

Our previous studies have shown that the Japanese encephalitis virus (JEV) strain Mie/40/2004 is the most virulent of the strains isolated by us in Japan from 2002 to 2004. Comparison of the amino acid sequence of Mie/40/2004 with those of low-virulence strains revealed that an isoleucine residue at position 3 of the Mie/40/2004 NS4A protein may increase viral pathogenicity. A recombinant virus with a single valine-to-isoleucine substitution (V3I) at position 3 in the low-virulence Mie/41/2002 background (rJEV-Mie41-NS4A) exhibited increased virulence in mice compared with the Mie/41/2002 parent strain. The V3I mutation did not affect virus growth in several cell lines. These results demonstrate that the isoleucine at position 3 in the NS4A protein of Mie/40/2004 is responsible for its high virulence . This is the first report to show that an amino acid substitution in a flavivirus NS4A protein alters viral pathogenicity in mice.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031237-0
2011-07-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/7/1601.html?itemId=/content/journal/jgv/10.1099/vir.0.031237-0&mimeType=html&fmt=ahah

References

  1. Aihara S. , Rao C. M. , Yu Y. X. , Lee T. , Watanabe K. , Komiya T. , Sumiyoshi H. , Hashimoto H. , Nomoto A. . ( 1991; ). Identification of mutations that occurred on the genome of Japanese encephalitis virus during the attenuation process. . Virus Genes 5:, 95–109. [CrossRef].[PubMed]
    [Google Scholar]
  2. Arroyo J. , Guirakhoo F. , Fenner S. , Zhang Z. X. , Monath T. P. , Chambers T. J. . ( 2001; ). Molecular basis for attenuation of neurovirulence of a yellow fever Virus/Japanese encephalitis virus chimera vaccine (ChimeriVax-JE). . J Virol 75:, 934–942. [CrossRef].[PubMed]
    [Google Scholar]
  3. Cecilia D. , Gould E. A. . ( 1991; ). Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. . Virology 181:, 70–77. [CrossRef].[PubMed]
    [Google Scholar]
  4. Chambers T. J. , Droll D. A. , Jiang X. , Wold W. S. , Nickells J. A. . ( 2007; ). JE Nakayama/JE SA14-14-2 virus structural region intertypic viruses: biological properties in the mouse model of neuroinvasive disease. . Virology 366:, 51–61. [CrossRef].[PubMed]
    [Google Scholar]
  5. Chen L. K. , Liao C. L. , Lin C. G. , Lai S. C. , Liu C. I. , Ma S. H. , Huang Y. Y. , Lin Y. L. . ( 1996; ). Persistence of Japanese encephalitis virus is associated with abnormal expression of the nonstructural protein NS1 in host cells. . Virology 217:, 220–229. [CrossRef].[PubMed]
    [Google Scholar]
  6. Gubler D. J. , Kuno G. , Markoff L. . ( 2007;). Flaviviruses. . In Fields Virology, , 5th edn., pp. 1153–1252. Edited by Knipe D. M. , Howley P. M. . . Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  7. Hanna J. N. , Ritchie S. A. , Phillips D. A. , Shield J. , Bailey M. C. , Mackenzie J. S. , Poidinger M. , McCall B. J. , Mills P. J. . ( 1996; ). An outbreak of Japanese encephalitis in the Torres Strait, Australia, 1995. . Med J Aust 165:, 256–260.[PubMed]
    [Google Scholar]
  8. Hasegawa H. , Yoshida M. , Shiosaka T. , Fujita S. , Kobayashi Y. . ( 1992; ). Mutations in the envelope protein of Japanese encephalitis virus affect entry into cultured cells and virulence in mice. . Virology 191:, 158–165. [CrossRef].[PubMed]
    [Google Scholar]
  9. Kim J. M. , Yun S. I. , Song B. H. , Hahn Y. S. , Lee C. H. , Oh H. W. , Lee Y. M. . ( 2008; ). A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. . J Virol 82:, 7846–7862. [CrossRef].[PubMed]
    [Google Scholar]
  10. Lee E. , Hall R. A. , Lobigs M. . ( 2004; ). Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses. . J Virol 78:, 8271–8280. [CrossRef].[PubMed]
    [Google Scholar]
  11. Liang J. J. , Liao C. L. , Liao J. T. , Lee Y. L. , Lin Y. L. . ( 2009; ). A Japanese encephalitis virus vaccine candidate strain is attenuated by decreasing its interferon antagonistic ability. . Vaccine 27:, 2746–2754. [CrossRef].[PubMed]
    [Google Scholar]
  12. Lin C. W. , Cheng C. W. , Yang T. C. , Li S. W. , Cheng M. H. , Wan L. , Lin Y. J. , Lai C. H. , Lin W. Y. , Kao M. C. . ( 2008; ). Interferon antagonist function of Japanese encephalitis virus NS4A and its interaction with DEAD-box RNA helicase DDX42. . Virus Res 137:, 49–55. [CrossRef].[PubMed]
    [Google Scholar]
  13. Lindenbach B. D. , Rice C. M. . ( 1999; ). Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. . J Virol 73:, 4611–4621.[PubMed]
    [Google Scholar]
  14. Lindenbach B. D. , Thiel H. J. , Rice C. M. . ( 2007; ). Flaviviridae: the viruses and their replication. . In Fields Virology, , 5th edn., pp. 1101–1151. Edited by Knipe D. M. , Howley P. M. . . Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  15. Mackenzie J. M. , Khromykh A. A. , Jones M. K. , Westaway E. G. . ( 1998; ). Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. . Virology 245:, 203–215. [CrossRef].[PubMed]
    [Google Scholar]
  16. Miller S. , Kastner S. , Krijnse-Locker J. , Bühler S. , Bartenschlager R. . ( 2007; ). The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. . J Biol Chem 282:, 8873–8882. [CrossRef].[PubMed]
    [Google Scholar]
  17. Monath T. P. , Arroyo J. , Levenbook I. , Zhang Z. X. , Catalan J. , Draper K. , Guirakhoo F. . ( 2002; ). Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live, attenuated vaccines. . J Virol 76:, 1932–1943. [CrossRef].[PubMed]
    [Google Scholar]
  18. Mori Y. , Okabayashi T. , Yamashita T. , Zhao Z. , Wakita T. , Yasui K. , Hasebe F. , Tadano M. , Konishi E. et al. ( 2005; ). Nuclear localization of Japanese encephalitis virus core protein enhances viral replication. . J Virol 79:, 3448–3458. [CrossRef].[PubMed]
    [Google Scholar]
  19. Muñoz-Jordan J. L. , Sánchez-Burgos G. G. , Laurent-Rolle M. , García-Sastre A. . ( 2003; ). Inhibition of interferon signaling by dengue virus. . Proc Natl Acad Sci U S A 100:, 14333–14338. [CrossRef].[PubMed]
    [Google Scholar]
  20. Nerome R. , Tajima S. , Takasaki T. , Yoshida T. , Kotaki A. , Lim C. K. , Ito M. , Sugiyama A. , Yamauchi A. et al. ( 2007; ). Molecular epidemiological analyses of Japanese encephalitis virus isolates from swine in Japan from 2002 to 2004. . J Gen Virol 88:, 2762–2768. [CrossRef].[PubMed]
    [Google Scholar]
  21. Ni H. , Barrett A. D. . ( 1996; ). Molecular differences between wild-type Japanese encephalitis virus strains of high and low mouse neuroinvasiveness. . J Gen Virol 77:, 1449–1455. [CrossRef].[PubMed]
    [Google Scholar]
  22. Ni H. , Barrett A. D. . ( 1998; ). Attenuation of Japanese encephalitis virus by selection of its mouse brain membrane receptor preparation escape variants. . Virology 241:, 30–36. [CrossRef].[PubMed]
    [Google Scholar]
  23. Nitayaphan S. , Grant J. A. , Chang G. J. , Trent D. W. . ( 1990; ). Nucleotide sequence of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. . Virology 177:, 541–552. [CrossRef].[PubMed]
    [Google Scholar]
  24. Pujhari S. K. , Prabhakar S. , Ratho R. K. , Modi M. , Sharma M. , Mishra B. . ( 2011; ). A novel mutation (S227T) in domain II of the envelope gene of Japanese encephalitis virus circulating in North India. . Epidemiol Infect 139:, 849–856.[PubMed] [CrossRef]
    [Google Scholar]
  25. Roosendaal J. , Westaway E. G. , Khromykh A. , Mackenzie J. M. . ( 2006; ). Regulated cleavages at the West Nile virus NS4A-2K-NS4B junctions play a major role in rearranging cytoplasmic membranes and Golgi trafficking of the NS4A protein. . J Virol 80:, 4623–4632. [CrossRef].[PubMed]
    [Google Scholar]
  26. Shiryaev S. A. , Chernov A. V. , Aleshin A. E. , Shiryaeva T. N. , Strongin A. Y. . ( 2009; ). NS4A regulates the ATPase activity of the NS3 helicase: a novel cofactor role of the non-structural protein NS4A from West Nile virus. . J Gen Virol 90:, 2081–2085. [CrossRef].[PubMed]
    [Google Scholar]
  27. Solomon T. , Ni H. , Beasley D. W. , Ekkelenkamp M. , Cardosa M. J. , Barrett A. D. . ( 2003; ). Origin and evolution of Japanese encephalitis virus in Southeast Asia. . J Virol 77:, 3091–3098. [CrossRef].[PubMed]
    [Google Scholar]
  28. Sumiyoshi H. , Tignor G. H. , Shope R. E. . ( 1995; ). Characterization of a highly attenuated Japanese encephalitis virus generated from molecularly cloned cDNA. . J Infect Dis 171:, 1144–1151. [CrossRef].[PubMed]
    [Google Scholar]
  29. Tajima S. , Nukui Y. , Ito M. , Takasaki T. , Kurane I. . ( 2006; ). Nineteen nucleotides in the variable region of 3′ non-translated region are dispensable for the replication of dengue type 1 virus in vitro. . Virus Res 116:, 38–44. [CrossRef].[PubMed]
    [Google Scholar]
  30. Tajima S. , Nerome R. , Nukui Y. , Kato F. , Takasaki T. , Kurane I. . ( 2010; ). A single mutation in the Japanese encephalitis virus E protein (S123R) increases its growth rate in mouse neuroblastoma cells and its pathogenicity in mice. . Virology 396:, 298–304. [CrossRef].[PubMed]
    [Google Scholar]
  31. Tajima S. , Takasaki T. , Kurane I. . ( 2011; ). Restoration of replication-defective dengue type 1 virus bearing mutations in the N-terminal cytoplasmic portion of NS4A by additional mutations in NS4B. . Arch Virol 156:, 63–69. [CrossRef].[PubMed]
    [Google Scholar]
  32. Tsai T. F. . ( 2000; ). New initiatives for the control of Japanese encephalitis by vaccination: minutes of a WHO/CVI meeting, Bangkok, Thailand, 13–15 October 1998. . Vaccine 18: Suppl. 2 1–25. [CrossRef].[PubMed]
    [Google Scholar]
  33. Uchil P. D. , Satchidanandam V. . ( 2001; ). Phylogenetic analysis of Japanese encephalitis virus: envelope gene based analysis reveals a fifth genotype, geographic clustering, and multiple introductions of the virus into the Indian subcontinent. . Am J Trop Med Hyg 65:, 242–251.[PubMed]
    [Google Scholar]
  34. Westaway E. G. , Mackenzie J. M. , Khromykh A. A. . ( 2003; ). Kunjin RNA replication and applications of Kunjin replicons. . Adv Virus Res 59:, 99–140. [CrossRef].[PubMed]
    [Google Scholar]
  35. Wu S. C. , Lin C. W. , Lee S. C. , Lian W. C. . ( 2003; ). Phenotypic and genotypic characterization of the neurovirulence and neuroinvasiveness of a large-plaque attenuated Japanese encephalitis virus isolate. . Microbes Infect 5:, 475–480. [CrossRef].[PubMed]
    [Google Scholar]
  36. Wu R. , Tian Y. , Deng J. , Yang K. , Liang W. , Guo R. , Duan Z. , Liu Z. , Zhou D. , Xu D. . ( 2011; ). Multiple amino acid variations in the nonstructural proteins of swine Japanese encephalitis virus alter its virulence in mice. . Arch Virol 156:, 685–688.[PubMed] [CrossRef]
    [Google Scholar]
  37. Zhao Z. , Date T. , Li Y. , Kato T. , Miyamoto M. , Yasui K. , Wakita T. . ( 2005; ). Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. . J Gen Virol 86:, 2209–2220. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.031237-0
Loading
/content/journal/jgv/10.1099/vir.0.031237-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1595–1600

Details of the full-length genome sequences of the DENV-3 isolates investigated in the genome analysis in this study.

[ PDF file] (16 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error