1887

Abstract

The prophylactic use of topical antiviral agents has recently been validated by the reduction in human immunodeficiency virus (HIV) type 1 infection incidence seen using tonofovir-containing microbicides. In order to develop a wide-spectrum microbicide to prevent infection with a wide range of sexually transmitted viruses, we have previously reported the development of HIV-neutralizing aptamers and here report the isolation and characterization of aptamers that neutralize herpes simplex virus type 2 (HSV-2). These aptamers bind the envelope glycoprotein (gD), are potent (IC of 20–50 nM) and are able to block infection pathways dependent on both major entry receptors, Nectin1 and HVEM. Structural analysis and mutagenesis of these aptamers reveal a core specificity element that could provide the basis for pharmaceutical development. As HSV-2 is a major risk factor for the acquisition of HIV-1, a microbicide capable of preventing HSV-2 infection would not only reduce the morbidity associated with HSV-2, but also that derived from HIV-1.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.030601-0
2011-07-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/7/1493.html?itemId=/content/journal/jgv/10.1099/vir.0.030601-0&mimeType=html&fmt=ahah

References

  1. Bunka D. H., Mantle B. J., Morten I. J., Tennent G. A., Radford S. E., Stockley P. G.. ( 2007;). Production and characterization of RNA aptamers specific for amyloid fibril epitopes. . J Biol Chem 282:, 34500–34509. [CrossRef].[PubMed].
    [Google Scholar]
  2. Bunka D. H., Platonova O., Stockley P. G.. ( 2010;). Development of aptamer therapeutics. . Curr Opin Pharmacol 10:, 557–562. [CrossRef].[PubMed].
    [Google Scholar]
  3. Derdeyn C. A., Decker J. M., Sfakianos J. N., Wu X., O'Brien W. A., Ratner L., Kappes J. C., Shaw G. M., Hunter E.. ( 2000;). Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. . J Virol 74:, 8358–8367. [CrossRef].[PubMed].
    [Google Scholar]
  4. Ellington A. D., Szostak J. W.. ( 1990;). In vitro selection of RNA molecules that bind specific ligands. . Nature 346:, 818–822. [CrossRef].[PubMed].
    [Google Scholar]
  5. Freeman E. E., Weiss H. A., Glynn J. R., Cross P. L., Whitworth J. A., Hayes R. J.. ( 2006;). Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. . AIDS 20:, 73–83. [CrossRef].[PubMed].
    [Google Scholar]
  6. Geraghty R. J., Krummenacher C., Cohen G. H., Eisenberg R. J., Spear P. G.. ( 1998;). Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. . Science 280:, 1618–1620. [CrossRef].[PubMed].
    [Google Scholar]
  7. James W.. ( 2001;). Nucleic acid and polypeptide aptamers: a powerful approach to ligand discovery. . Curr Opin Pharmacol 1:, 540–546. [CrossRef].[PubMed].
    [Google Scholar]
  8. Khati M., Schüman M., Ibrahim J., Sattentau Q., Gordon S., James W.. ( 2003;). Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2′ F-RNA aptamers. . J Virol 77:, 12692–12698. [CrossRef].[PubMed].
    [Google Scholar]
  9. Looker K. J., Garnett G. P., Schmid G. P.. ( 2008;). An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. . Bull World Health Organ 86:, 805–812. (A.). [CrossRef].[PubMed].
    [Google Scholar]
  10. Manoj S., Jogger C. R., Myscofski D., Yoon M., Spear P. G.. ( 2004;). Mutations in herpes simplex virus glycoprotein D that prevent cell entry via nectins and alter cell tropism. . Proc Natl Acad Sci U S A 101:, 12414–12421. [CrossRef].[PubMed].
    [Google Scholar]
  11. Mathews D. H., Sabina J., Zuker M., Turner D. H.. ( 1999;). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. . J Mol Biol 288:, 911–940. [CrossRef].[PubMed].
    [Google Scholar]
  12. Montgomery R. I., Warner M. S., Lum B. J., Spear P. G.. ( 1996;). Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. . Cell 87:, 427–436. [CrossRef].[PubMed].
    [Google Scholar]
  13. Moore M. D., Cookson J., Coventry V. K., Sproat B., Rabe L., Cranston R. D., McGowan I., James W.. ( 2011;). Protection of HIV neutralizing aptamers against rectal and vaginal nucleases: implications for RNA-based therapeutics. . J Biol Chem 286:, 2526–2535. [CrossRef].[PubMed].
    [Google Scholar]
  14. Para M. F., Parish M. L., Noble A. G., Spear P. G.. ( 1985;). Potent neutralizing activity associated with anti-glycoprotein D specificity among monoclonal antibodies selected for binding to herpes simplex virions. . J Virol 55:, 483–488.[PubMed].
    [Google Scholar]
  15. Renzi C., Douglas J. M. Jr, Foster M., Critchlow C. W., Ashley-Morrow R., Buchbinder S. P., Koblin B. A., McKirnan D. J., Mayer K. H., Celum C. L.. ( 2003;). Herpes simplex virus type 2 infection as a risk factor for human immunodeficiency virus acquisition in men who have sex with men. . J Infect Dis 187:, 19–25. [CrossRef].[PubMed].
    [Google Scholar]
  16. Rhie A., Kirby L., Sayer N., Wellesley R., Disterer P., Sylvester I., Gill A., Hope J., James W., Tahiri-Alaoui A.. ( 2003;). Characterization of 2′-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion. . J Biol Chem 278:, 39697–39705. [CrossRef].[PubMed].
    [Google Scholar]
  17. Robertson D. L., Joyce G. F.. ( 1990;). Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. . Nature 344:, 467–468. [CrossRef].[PubMed].
    [Google Scholar]
  18. Sousa R., Padilla R.. ( 1995;). A mutant T7 RNA polymerase as a DNA polymerase. . EMBO J 14:, 4609–4621.[PubMed].
    [Google Scholar]
  19. Spear P. G.. ( 2004;). Herpes simplex virus: receptors and ligands for cell entry. . Cell Microbiol 6:, 401–410. [CrossRef].[PubMed].
    [Google Scholar]
  20. Spear P. G., Manoj S., Yoon M., Jogger C. R., Zago A., Myscofski D.. ( 2006;). Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry. . Virology 344:, 17–24. [CrossRef].[PubMed].
    [Google Scholar]
  21. Taylor J. M., Lin E., Susmarski N., Yoon M., Zago A., Ware C. F., Pfeffer K., Miyoshi J., Takai Y., Spear P. G.. ( 2007;). Alternative entry receptors for herpes simplex virus and their roles in disease. . Cell Host Microbe 2:, 19–28. [CrossRef].[PubMed].
    [Google Scholar]
  22. Tuerk C., Gold L.. ( 1990;). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. . Science 249:, 505–510. [CrossRef].[PubMed].
    [Google Scholar]
  23. Wei X., Decker J. M., Liu H., Zhang Z., Arani R. B., Kilby J. M., Saag M. S., Wu X., Shaw G. M., Kappes J. C.. ( 2002;). Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. . Antimicrob Agents Chemother 46:, 1896–1905. [CrossRef].[PubMed].
    [Google Scholar]
  24. Yoon M., Zago A., Shukla D., Spear P. G.. ( 2003;). Mutations in the N termini of herpes simplex virus type 1 and 2 gDs alter functional interactions with the entry/fusion receptors HVEM, nectin-2, and 3-O-sulfated heparan sulfate but not with nectin-1. . J Virol 77:, 9221–9231. [CrossRef].[PubMed].
    [Google Scholar]
  25. Zuker M.. ( 2003;). Mfold web server for nucleic acid folding and hybridization prediction. . Nucleic Acids Res 31:, 3406–3415. [CrossRef].[PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.030601-0
Loading
/content/journal/jgv/10.1099/vir.0.030601-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error