- Volume 91, Issue 4, 2010
Volume 91, Issue 4, 2010
- Animal
-
- DNA viruses
-
-
Herpes simplex virus type 1 latency-associated transcript inhibits apoptosis and promotes neurite sprouting in neuroblastoma cells following serum starvation by maintaining protein kinase B (AKT) levels
More LessThe herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is expressed abundantly in latently infected sensory neurons. LAT-deletion-mutant virus strains have reduced-reactivation phenotypes in small animal models of infection, demonstrating that LAT plays an important role in the latency–reactivation cycle of HSV-1. Previous studies demonstrated that the anti-apoptosis functions of LAT are important for regulating the latency–reactivation cycle because three different anti-apoptosis genes can substitute for LAT. Although LAT inhibits caspase 3 activation, the signalling pathway by which LAT inhibits caspase 3 activation was not identified. In this study, we analysed mouse neuroblastoma cells (C1300) that express LAT stably (DC-LAT6 cells) following serum starvation. As expected, DC-LAT6 cells were resistant to apoptosis following serum withdrawal. Levels of total and phosphorylated AKT (protein kinase B), a serine/threonine protein kinase that promotes cell survival, were higher in DC-LAT6 cells after serum withdrawal than in C1300 cells or a cell line stably transfected with a LAT promoter mutant (DC-ΔLAT311). A specific AKT inhibitor reduced the anti-apoptosis functions of LAT and phosphorylated AKT levels. After serum withdrawal, more DC-LAT6 cells sprouted neurites and exhibited a differentiated morphology. NeuN (neuronal nuclei), a neuron-specific nuclear protein, was expressed abundantly in DC-LAT6 cells, but not C1300 cells, after serum withdrawal, further supporting the concept that LAT enhanced neuronal-like morphology. Collectively, these studies suggested that LAT, directly or indirectly, maintained total and phosphorylated AKT levels, which correlated with increased cell survival and mature neuronal-like morphology.
-
-
-
Characterization of a novel wood mouse virus related to murid herpesvirus 4
Two novel gammaherpesviruses were isolated, one from a field vole (Microtus agrestis) and the other from wood mice (Apodemus sylvaticus). The genome of the latter, designated wood mouse herpesvirus (WMHV), was completely sequenced. WMHV had the same genome structure and predicted gene content as murid herpesvirus 4 (MuHV4; murine gammaherpesvirus 68). Overall nucleotide sequence identity between WMHV and MuHV4 was 85 % and most of the 10 kb region at the left end of the unique region was particularly highly conserved, especially the viral tRNA-like sequences and the coding regions of genes M1 and M4. The partial sequence (71 913 bp) of another gammaherpesvirus, Brest herpesvirus (BRHV), which was isolated ostensibly from a white-toothed shrew (Crocidura russula), was also determined. The BRHV sequence was 99.2 % identical to the corresponding portion of the WMHV genome. Thus, WMHV and BRHV appeared to be strains of a new virus species. Biological characterization of WMHV indicated that it grew with similar kinetics to MuHV4 in cell culture. The pathogenesis of WMHV in wood mice was also extremely similar to that of MuHV4, except for the absence of inducible bronchus-associated lymphoid tissue at day 14 post-infection and a higher load of latently infected cells at 21 days post-infection.
-
-
-
Complete genome sequence and taxonomic position of anguillid herpesvirus 1
Eel herpesvirus or anguillid herpesvirus 1 (AngHV1) frequently causes disease in freshwater eels. The complete genome sequence of AngHV1 and its taxonomic position within the family Alloherpesviridae were determined. Shotgun sequencing revealed a 249 kbp genome including an 11 kbp terminal direct repeat that contains 7 of the 136 predicted protein-coding open reading frames. Twelve of these genes are conserved among other members of the family Alloherpesviridae and another 28 genes have clear homologues in cyprinid herpesvirus 3. Phylogenetic analyses based on amino acid sequences of five conserved genes, including the ATPase subunit of the terminase, confirm the position of AngHV1 within the family Alloherpesviridae, where it is most closely related to the cyprinid herpesviruses. Our analyses support a recent proposal to subdivide the family Alloherpesviridae into two sister clades, one containing AngHV1 and the cyprinid herpesviruses and the other containing Ictalurid herpesvirus 1 and the ranid herpesviruses.
-
-
-
Human papillomavirus 5 and 8 E6 downregulate interleukin-8 secretion in primary human keratinocytes
Human papillomaviruses (HPVs) of the genus Betapapillomavirus appear to be involved in the early stages of skin cancer development, since both the prevalence and viral load are higher in precancerous actinic keratoses than in skin cancers. Interleukin-8 (IL-8) is an inflammatory cytokine that serves to alert the surrounding tissue after UV-induced damage. We examined the effects of the E2, E6 and E7 proteins of HPV8 and the E6 proteins of various HPV genotypes on IL-8 secretion from primary keratinocytes. HPV5 and HPV8 E6 showed the highest downregulation of basal IL-8 secretion. HPV8 E6 also negatively modulated IL-8 mRNA expression and protein secretion upon UVB irradiation. The downregulation of IL-8 in actinic keratoses may weaken the response to UV-induced damage and thus favour the accumulation of UVB-induced mutations.
-
-
-
Antibody to parvovirus B19 nonstructural protein is associated with chronic arthralgia in patients with chronic fatigue syndrome/myalgic encephalomyelitis
Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a neuro-immune disease of uncertain pathogenesis. Human parvovirus B19 infection has been shown to occur just prior to development of the onset of CFS/ME in several cases, although B19 seroprevalence studies do not show any significant differences between CFS/ME and controls. In this study, we analysed parvovirus B19 markers in CFS/ME patients (n=200), diagnosed according to Fukuda CDC criteria, and normal blood donors (n=200). Serum from each subject was tested for anti-B19 VP2 IgM and IgG (by Biotrin ELISA), anti-B19 NS1 IgM and IgG (by immunofluorescence), and B19 DNA (by real-time PCR). CFS/ME patients and normal blood donors had a similar B19 seroprevalence (75 % versus 78 %, respectively). Eighty-three CFS patients (41.5 %) as compared with fourteen (7 %) normal blood donors tested positive for anti-B19 NS1 IgG (χ 2=64.8; P<0.0001; odds ratio=9.42, CI 5.11–17.38). Of these 83 patients, 61 complained of chronic joint pain, while 22 did not. Parvovirus B19 DNA was detected in serum of 11 CFS patients and none of the controls by Taqman real-time PCR (χ 2=9.35, P<0.002). Positivity for anti-B19 NS1 IgG was associated with higher expression levels of the human CFS-associated genes NHLH1 and GABPA. As NS1 antibodies are thought to indicate chronic or severe courses of B19 infection, these findings suggest that although the seroprevalence of B19 in CFS patients is similar to controls, the immune control of the virus in these patients may not be efficient.
-
-
-
Host-range expansion of Spodoptera exigua multiple nucleopolyhedrovirus to Agrotis segetum larvae when the midgut is bypassed
More LessGiven the high similarity in genome content and organization between Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and Agrotis segetum nucleopolyhedrovirus (AgseNPV), as well as the high percentages of similarity found between their 30 core genes, the specificity of these NPVs was analysed for the respective insect hosts, S. exigua and A. segetum. The LD50 for AgseNPV in second-instar A. segetum larvae was 83 occlusion bodies per larva and the LT50 was 8.1 days. AgseNPV was orally infectious for S. exigua, but the LD50 was 10 000-fold higher than for SeMNPV. SeMNPV was not infectious for A. segetum larvae when administered orally, but an infection was established by injection into the haemocoel. Bypassing midgut entry by intrahaemocoelic inoculation suggested that the midgut is the major barrier in A. segetum larvae for infection by SeMNPV. Delayed-early genes of SeMNPV are expressed in the midgut of A. segetum larvae after oral infections, indicating that the virus is able to enter midgut epithelial cells and that it proceeds through the first phases of the infection process. The possible mechanisms of A. segetum resistance to SeMNPV in per os infections are discussed.
-
-
-
DNA photolyases of Chrysodeixis chalcites nucleopolyhedrovirus are targeted to the nucleus and interact with chromosomes and mitotic spindle structures
More LessCyclobutane pyrimidine dimer (CPD) photolyases convert UV-induced CPDs in DNA into monomers using visible light as the energy source. Two phr genes encoding class II CPD photolyases PHR1 and PHR2 have been identified in Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV). Transient expression assays in insect cells showed that PHR1–EGFP fusion protein was localized in the nucleus. Early after transfection, PHR2–EGFP was distributed over the cytoplasm and nucleus but, over time, it became localized predominantly in the nucleus. Immunofluorescence analysis with anti-PHR2 antiserum showed that, early after transfection, non-fused PHR2 was already present mainly in the nucleus, suggesting that the fusion of PHR2 to EGFP hindered its nuclear import. Both PHR–EGFP fusion proteins strongly colocalized with chromosomes and spindle, aster and midbody structures during host-cell mitosis. When PHR2–EGFP-transfected cells were superinfected with Autographa californica multiple-nucleocapsid NPV (AcMNPV), the protein colocalized with virogenic stroma, the replication factories of baculovirus DNA. The collective data support the supposition that the PHR2 protein plays a role in baculovirus DNA repair.
-
-
-
A soluble form of P74 can act as a per os infectivity factor to the Autographa californica multiple nucleopolyhedrovirus
More LessThe baculovirus occlusion-derived virion (ODV) is required to spread virus infection among insect hosts via the per os route. The Autographa californica multicapsid nucleopolyhedrovirus P74 protein is an ODV envelope protein that is essential for ODVs to be infectious. P74 is anchored in the ODV envelope by a C-terminal transmembrane anchor domain and is N-terminally exposed on the ODV surface. In the present study, a series of N-terminal and C-terminal truncation mutants of P74 were evaluated for their ability to rescue per os infectivity of the P74-null virus, AcLP4. It was discovered that a P74 truncation mutant lacking the C-terminal transmembrane anchor domain of P74 was able to rescue per os infection. This result shows that a soluble form of P74 retains per os infectivity factor function and suggests that P74 may be complexed with other proteins in the ODV envelope.
-
- Plant
-
-
-
Replicative intermediates of maize streak virus found during leaf development
Geminiviruses of the genera Begomovirus and Curtovirus utilize three replication modes: complementary-strand replication (CSR), rolling-circle replication (RCR) and recombination-dependent replication (RDR). Using two-dimensional gel electrophoresis, we now show for the first time that maize streak virus (MSV), the type member of the most divergent geminivirus genus, Mastrevirus, does the same. Although mastreviruses have fewer regulatory genes than other geminiviruses and uniquely express their replication-associated protein (Rep) from a spliced transcript, the replicative intermediates of CSR, RCR and RDR could be detected unequivocally within infected maize tissues. All replicative intermediates accumulated early and, to varying degrees, were already present in the shoot apex and leaves at different maturation stages. Relative to other replicative intermediates, those associated with RCR increased in prevalence during leaf maturation. Interestingly, in addition to RCR-associated DNA forms seen in other geminiviruses, MSV also apparently uses dimeric open circular DNA as a template for RCR.
-
-
-
-
P0 proteins of European beet-infecting poleroviruses display variable RNA silencing suppression activity
Post-transcriptional gene silencing (PTGS), or RNA silencing, is one of the key mechanisms of antiviral defence used by plants. To counter this defence response, viruses produce suppressor proteins that are able to inhibit the PTGS pathway or to interfere with some of its function. The aim of this study was to evaluate the RNA silencing suppressor (RSS) activity of P0 proteins from selected European isolates of the beet-infecting poleroviruses beet chlorosis virus (BChV) and beet mild yellowing virus (BMYV) using two different experimental systems: (i) agro-infiltration of Nicotiana benthamiana green fluorescent protein-positive plants and (ii) mechanical inoculation of Chenopodium quinoa using a beet necrotic yellow vein virus (BNYVV, genus Benyvirus) RNA3-based replicon. The results demonstrated that P0 of most BMYV isolates exhibited RSS activity, although at various efficiencies among isolates. Conversely, P0 of BChV isolates displayed no RSS activity in either of the two systems under the experimental conditions used. These results are the first reported evidence that P0 proteins of two closely related beet poleroviruses show strain-specific differences in their effects on RNA silencing.
-
-
-
Recombination and selection pressure in the ipomovirus sweet potato mild mottle virus (Potyviridae) in wild species and cultivated sweetpotato in the centre of evolution in East Africa
More LessSweet potato mild mottle virus (SPMMV) is the type member of the genus Ipomovirus (family Potyviridae). SPMMV occurs in cultivated sweetpotatoes (Ipomoea batatas Lam.; Convolvulaceae) in East Africa, but its natural wild hosts are unknown. In this study, SPMMV was detected in 283 (9.8 %) of the 2864 wild plants (family Convolvulaceae) sampled from different agro-ecological zones of Uganda. The infected plants belonged to 21 species that were previously not known to be natural hosts of SPMMV. The size of the SPMMV coat protein (CP) was determined by Western blot analysis, N-terminal protein sequencing and peptide mass fingerprinting. Data implicated a proteolytic cleavage site, VYVEPH/A, at the NIb/CP junction, resulting in a CP of approximately 35 kDa. Nearly complete sequences of 13 SPMMV isolates were characterized. Phylogenetic analysis of non-recombinant CP-encoding sequences placed five isolates from wild species sampled in the central zone of Uganda into a separate cluster. Recombination events were detected in the 5′- and 3′-proximal parts of the genome, providing novel evidence of recombination in the genus Ipomovirus. Thirteen amino acids in the N terminus of the P1 protein were under positive selection, whereas purifying selection was implicated for the HC-Pro-, P3-, 6K1- and CP-encoding regions. These data, supported by previous studies on ipomoviruses, provide indications of an evolutionary process in which the P1 proteinase responds to the needs of adaptation.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)