The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is expressed abundantly in latently infected sensory neurons. LAT-deletion-mutant virus strains have reduced-reactivation phenotypes in small animal models of infection, demonstrating that LAT plays an important role in the latency–reactivation cycle of HSV-1. Previous studies demonstrated that the anti-apoptosis functions of LAT are important for regulating the latency–reactivation cycle because three different anti-apoptosis genes can substitute for LAT. Although LAT inhibits caspase 3 activation, the signalling pathway by which LAT inhibits caspase 3 activation was not identified. In this study, we analysed mouse neuroblastoma cells (C1300) that express LAT stably (DC-LAT6 cells) following serum starvation. As expected, DC-LAT6 cells were resistant to apoptosis following serum withdrawal. Levels of total and phosphorylated AKT (protein kinase B), a serine/threonine protein kinase that promotes cell survival, were higher in DC-LAT6 cells after serum withdrawal than in C1300 cells or a cell line stably transfected with a LAT promoter mutant (DC-ΔLAT311). A specific AKT inhibitor reduced the anti-apoptosis functions of LAT and phosphorylated AKT levels. After serum withdrawal, more DC-LAT6 cells sprouted neurites and exhibited a differentiated morphology. NeuN (neuronal nuclei), a neuron-specific nuclear protein, was expressed abundantly in DC-LAT6 cells, but not C1300 cells, after serum withdrawal, further supporting the concept that LAT enhanced neuronal-like morphology. Collectively, these studies suggested that LAT, directly or indirectly, maintained total and phosphorylated AKT levels, which correlated with increased cell survival and mature neuronal-like morphology.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ahmed, M. & Fraser, N.(2001). Herpes simplex virus type 1 2-kilobase latency-associated transcript intron associates with ribosomal proteins and splicing factors. J Virol 75, 12070–12080.[CrossRef] [Google Scholar]
  2. Ahmed, M., Lock, M., Miller, C. G. & Fraser, N. W.(2002). Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J Virol 76, 717–729.[CrossRef] [Google Scholar]
  3. Alessi, D. R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P. & Hemmings, B. A.(1996). Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15, 6541–6551. [Google Scholar]
  4. Barnett, S. F., Defeo-Jones, D., Fu, S., Hancock, P. J., Haskell, K. M., Jones, R. E., Kahana, J. A., Kral, A. M., Leander, K. & other authors(2005). Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 385, 399–408.[CrossRef] [Google Scholar]
  5. Caroni, P.(1997). Intrinsic neuronal determinants that promote axonal sprouting and elongation. Bioessays 19, 767–775.[CrossRef] [Google Scholar]
  6. Carpenter, D., Hsiang, C., Jin, L., Osorio, N., BenMohamed, L., Jones, C. & Wechsler, S. L.(2007). Stable cell lines expressing high levels of the herpes simplex virus type 1 LAT are refractory to caspase 3 activation and DNA laddering following cold shock induced apoptosis. Virology 369, 12–18.[CrossRef] [Google Scholar]
  7. Chen, D. F., Schneider, G. E., Martinou, J. C. & Tonegawa, S.(1997a). Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature 385, 434–439.[CrossRef] [Google Scholar]
  8. Chen, S. H., Kramer, M. F., Schaffer, P. A. & Coen, D. M.(1997b). A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J Virol 71, 5878–5884. [Google Scholar]
  9. Cooray, S.(2004). The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival. J Gen Virol 85, 1065–1076.[CrossRef] [Google Scholar]
  10. Darr, C. D., Mauser, A. & Kenny, S.(2001). Epstein–Barr virus immediate-early protein BRLF1 induces the lytic form of viral replication through a mechanism involving phosphatidylinositol 3-kinase activation. J Virol 75, 6135–6142.[CrossRef] [Google Scholar]
  11. Das, M., Scappini, E., Martin, N. P., Wong, K. A., Dunn, S., Chen, Y.-J., Miller, S. L. H., Domin, J. & O'Bryan, J. P.(2007). Regulation of neuronal survival through an intersectin-phosphoinositide 3′-kinase C2B-AKT pathway. Mol Cell Biol 27, 7906–7917.[CrossRef] [Google Scholar]
  12. Dawson, C. W., Tramountanis, G., Eliopoulos, A. G. & Young, L. S.(2003). Epstein–Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/AKT pathway to promote cell survival and induce actin filament remodeling. J Biol Chem 278, 3694–3704.[CrossRef] [Google Scholar]
  13. Deatly, A. M., Spivack, J. G., Lavi, E., O'Boyle, D. R. & Fraser, N. W.(1988). Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome. J Virol 62, 749–756. [Google Scholar]
  14. Englund, C., Alvord, E. C., Jr, Silbergeld, D., Born, D. E., Small, R. & Hevner, R. F.(2005). NeuN expression correlates with reduced mitotic index of neoplastic cells in central neurocytomas. Neuropathol Appl Neurobiol 31, 429–438.[CrossRef] [Google Scholar]
  15. Evangelopoulos, M. E., Weiss, J. & Krüttgen, J. A.(2005). Signaling pathways leading to neuroblastoma differentiation after serum withdrawal: HDL blocks neuroblastoma differentiation by inhibition of EGFR. Oncogene 24, 3309–3318.[CrossRef] [Google Scholar]
  16. Farrell, M. J., Dobson, A. T. & Feldman, L. T.(1991). Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci U S A 88, 790–794.[CrossRef] [Google Scholar]
  17. Garber, D. A., Schaffer, P. A. & Knipe, D. M.(1997). A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol 71, 5885–5893. [Google Scholar]
  18. Geiser, V., Rose, S. & Jones, C.(2008). Bovine herpesvirus type 1 induces cell death by a cell-type-dependent fashion. Microb Pathog 44, 459–466.[CrossRef] [Google Scholar]
  19. Hamza, M. A., Higgins, D. M., Feldman, L. T. & Ruyechan, W. T.(2007). The latency-associated transcript of herpes simplex virus type 1 promotes survival and stimulates axonal regeneration in sympathetic and trigeminal ganglia. J Neurovirol 13, 56–66.[CrossRef] [Google Scholar]
  20. Henderson, G., Peng, W., Jin, L., Perng, G.-C., Nesburn, A. B., Wechsler, S. L. & Jones, C.(2002). Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus latency-associated transcript. J Neurovirol 8, 103–111.[CrossRef] [Google Scholar]
  21. Hill, J. M., Sedarati, F., Javier, R. T., Wagner, E. K. & Stevens, J. G.(1990). Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 174, 117–125.[CrossRef] [Google Scholar]
  22. Horner, P. J. & Gage, F. H.(2000). Regenerating the damaged central nervous system. Nature 407, 963–970.[CrossRef] [Google Scholar]
  23. Inman, M., Perng, G.-C., Henderson, G., Ghiasi, H., Nesburn, A. B., Wechsler, S. L. & Jones, C.(2001). Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture. J Virol 75, 3636–3646.[CrossRef] [Google Scholar]
  24. Jaber, T., Henderson, G., Li, S., Perng, G.-C., Carpenter, D., Wechsler, S. & Jones, C.(2009). Identification of a novel herpes simplex virus type 1 (HSV-1) transcript and protein (AL3) expressed during latency. J Gen Virol 90, 2342–2352.[CrossRef] [Google Scholar]
  25. Jin, L., Perng, G. C., Naito, J., Nesburn, A. B., Jones, C. & Wechsler, S. L.(2002). The HSV-1 LAT can decrease apoptosis in infected tissue culture cells. In 27th International Herpesvirus Workshop, abstract 15.06. Cairns, Australia, 20–26 July 2002.
  26. Jin, L., Peng, W., Perng, G.-C., Nesburn, A. B., Jones, C. & Wechsler, S. L.(2003). Identification of herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) sequences that both inhibit apoptosis and enhance the spontaneous reactivation phenotype. J Virol 77, 6556–6561.[CrossRef] [Google Scholar]
  27. Jin, L., Perng, G.-C., Brick, D. J., Naito, J., Nesburn, A. B., Jones, C. & Wechsler, S. L.(2004). Methods for detecting the HSV-1 LAT anti-apoptosis activity in virus infected tissue culture cells. J Virol Methods 118, 9–13.[CrossRef] [Google Scholar]
  28. Jin, L., Perng, G.-C., Mott, K. R., Osorio, N., Naito, J., Brick, D. J., Carpenter, D., Jones, C. & Wechsler, S. L.(2005). A herpes simplex virus type 1 mutant expressing a baculovirus inhibitor of apoptosis gene in place of latency-associated transcript has a wild-type reactivation phenotype in the mouse. J Virol 79, 12286–12295.[CrossRef] [Google Scholar]
  29. Jin, L., Carpenter, D., Moerdyk-Schauwecker, M., Vanarsdall, A. L., Osorio, N., Hsiang, C., Jones, C. & Wechsler, S. L.(2008). Cellular FLIP can substitute for the herpes simplex virus type 1 LAT gene to support a wild type virus reactivation phenotype in mice. J Neurovirol 14, 389–400.[CrossRef] [Google Scholar]
  30. Jones, C.(1998). Alphaherpesvirus latency: its role in disease and survival of the virus in nature. Adv Virus Res 51, 81–133. [Google Scholar]
  31. Jones, C.(2003). Herpes simplex virus type 1 and bovine herpesvirus 1 latency. Clin Microbiol Rev 16, 79–95.[CrossRef] [Google Scholar]
  32. Kang, W., Mukerjee, R. & Fraser, N. F.(2003). Establishment and maintenance of HSV latent infection is mediated through correct splicing of the LAT primary transcript. Virology 312, 233–244.[CrossRef] [Google Scholar]
  33. Krueger, A., Baumann, S., Krammer, P. H. & Kirchhoff, S.(2001). FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol 21, 8247–8254.[CrossRef] [Google Scholar]
  34. Krummenacher, C., Zabolotny, J. M. & Fraser, N. W.(1997). Selection of a nonconsensus branch point is influenced by an RNA stem-loop structure and is important to confer stability to the herpes simplex virus 2-kilobase latency-associated transcript. J Virol 71, 5849–5860. [Google Scholar]
  35. Lee, R. H. K., Wong, W. L., Chan, C. H. & Chan, S. Y.(2006). Differential effects of glial cell line-derived neurotrophic factor and neurturin in RET/GFRa1-expressing cells. J Neurosci Res 83, 80–90.[CrossRef] [Google Scholar]
  36. Leib, D. A., Bogard, C. L., Kosz-Vnenchak, M., Hicks, K. A., Coen, D. M., Knipe, D. M. & Schaffer, P. A.(1989). A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol 63, 2893–2900. [Google Scholar]
  37. Manning, B. D. & Cantley, L. C.(2007). AKT/PKB: navigating down stream. Cell 129, 1261–1274.[CrossRef] [Google Scholar]
  38. Mott, K. R., Osorio, N., Jin, L., Brick, D. J., Naito, J., Cooper, J., Henderson, G., Inman, M., Jones, C. & other authors(2003). The bovine herpesvirus 1 LR ORF2 is crucial for this gene's ability to restore the high wild-type reactivation phenotype to a herpes simplex virus-1 LAT null mutant. J Gen Virol 84, 2975–2985.[CrossRef] [Google Scholar]
  39. Mullen, R. J., Buck, C. R. & Smith, A. M.(1992). NeuN, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211. [Google Scholar]
  40. Nicosia, M., Zabolotny, J. M., Lirette, R. P. & Fraser, N. W.(1994). The HSV-1 2-kb latency-associated transcript is found in the cytoplasm comigrating with ribosomal subunits during productive infection. Virology 204, 717–728.[CrossRef] [Google Scholar]
  41. Peng, W., Henderson, G., Perng, G.-C., Nesburn, A. B., Wechsler, S. L. & Jones, C.(2003). The gene that encodes the herpes simplex virus type 1 latency-associated transcript influences the accumulation of transcripts (Bcl-xL and Bcl-xS) that encode apoptotic regulatory proteins. J Virol 77, 10714–10718.[CrossRef] [Google Scholar]
  42. Peng, W., Jin, L., Henderson, G., Perng, G.-C., Brick, D. J., Nesburn, A. B., Wechsler, S. L. & Jones, C.(2004). Mapping herpes simplex virus type 1 (HSV-1) LAT sequences that protect from apoptosis mediated by a plasmid expressing caspase-8. J Neurovirol 10, 260–265.[CrossRef] [Google Scholar]
  43. Perng, G.-C., Dunkel, E. C., Geary, P. A., Slanina, S. M., Ghiasi, H., Kaiwar, R., Nesburn, A. B. & Wechsler, S. L.(1994). The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol 68, 8045–8055. [Google Scholar]
  44. Perng, G.-C., Jones, C., Ciacci-Zanella, J., Stone, M., Henderson, G., Yukht, A., Slanina, S. M., Hoffman, F. M., Ghiasi, H. & other authors(2000). Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript (LAT). Science 287, 1500–1503.[CrossRef] [Google Scholar]
  45. Perng, G.-C., Maguen, B., Jing, L., Mott, K. R., Osorio, N., Slanina, S. M., Yukht, A., Ghiasi, H., Nesburn, A. B. & other authors(2002a). A novel herpes simplex virus type 1 (HSV-1) transcript (AL-RNA) antisense to the 5′ end of LAT (latency associated transcript) produces a protein in infected rabbits. J Virol 76, 8003–8010.[CrossRef] [Google Scholar]
  46. Perng, G.-C., Maguen, B., Jin, L., Mott, K. R., Osorio, N., Slanina, S. M., Yukht, A., Ghiasi, H., Nesburn, A. B. & other authors(2002b). A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels. J Virol 76, 1224–1235.[CrossRef] [Google Scholar]
  47. Rock, D. L., Nesburn, A. B., Ghiasi, H., Ong, J., Lewis, T. L., Lokensgard, J. R. & Wechsler, S. L.(1987). Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61, 3820–3826. [Google Scholar]
  48. Saira, K., Zhou, Y. & Jones, C.(2007). The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) induces degradation of interferon response factor 3 (IRF3), and consequently inhibits beta interferon promoter activity. J Virol 81, 3077–3086.[CrossRef] [Google Scholar]
  49. Scheid, M. P. & Woodgett, J. R.(2003). Unraveling the activation of protein kinase B/Akt. FEBS Lett 546, 108–112.[CrossRef] [Google Scholar]
  50. Schmitz, I., Kirchhoff, S. & Krammer, P. H.(2000). Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 32, 1123–1136.[CrossRef] [Google Scholar]
  51. Schubert, D., Humphries, S., Baroni, C. & Cohn, M.(1969).In vitro differentiation of a mouse neuroblastoma. Proc Natl Acad Sci U S A 64, 316–323.[CrossRef] [Google Scholar]
  52. Seeds, N. W., Gilman, A. G., Amano, T. & Nirenberg, M. W.(1970). Regulation of axon formation by clonal lines of a neural tumor. Proc Natl Acad Sci U S A 66, 160–167.[CrossRef] [Google Scholar]
  53. Shen, W. & Jones, C.(2008). Open reading frame 2 encoded by the latency related gene of bovine herpesvirus 1 has anti-apoptosis activity in transiently transfected neuroblastoma cells. J Virol 82, 10940–10945.[CrossRef] [Google Scholar]
  54. Shen, W., Sa e Silva, M., Jaber, T., Vitvitskaia, O., Li, S., Henderson, G. & Jones, C.(2009). Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis. J Virol 83, 9131–9139.[CrossRef] [Google Scholar]
  55. Shuangshoti, S., Mujananon, S., Chaipipat, M., Keetacheeva, K. & Shuangshoti, S.(2005). Expression of neuronal nuclear antigen (NeuN) in epithelial neuroendocrine carcinoma. Appl Immunohistochem Mol Morphol 13, 265–267.[CrossRef] [Google Scholar]
  56. Srivastava, A. K. & Pandey, S. K.(1998). Potential mechanism(s) involved in the regulation of glycogen synthesis by insulin. Mol Cell Biochem 182, 135–141.[CrossRef] [Google Scholar]
  57. Thomas, D. L., Lock, M., Zabolotny, J. M., Mohan, B. R. & Fraser, N. W.(2002). The 2-kilobase intron of the herpes simplex virus type 1 latency-associated transcript has a half-life of approximately 24 hours in SY5Y and COS-1 cells. J Virol 76, 532–540.[CrossRef] [Google Scholar]
  58. Wang, X.(2001). The expanding role of mitochondria in apoptosis. Genes Dev 15, 2922–2933. [Google Scholar]
  59. Welsh, G. I., Wilson, C. & Proud, C. G.(1996). GSK3: a shaggy dog story. Trends Cell Biol 6, 274–279.[CrossRef] [Google Scholar]
  60. Workman, A., Perez, S., Doster, A. & Jones, C.(2009). Dexamethasone treatment of calves latently infected with bovine herpesvirus 1 (BHV-1) leads to activation of the bICP0 early promoter, in part by the cellular transcription factor C/EBP-alpha. J Virol 83, 8800–8809.[CrossRef] [Google Scholar]
  61. Zwaagstra, J. C., Ghiasi, H., Slanina, S. M., Nesburn, A. B., Wheatley, S. C., Lillycrop, K., Wood, J., Latchman, D. S., Patel, K. & Wechsler, S. L.(1990). Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript. J Virol 64, 5019–5028. [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error