1887

Abstract

Cyclobutane pyrimidine dimer (CPD) photolyases convert UV-induced CPDs in DNA into monomers using visible light as the energy source. Two genes encoding class II CPD photolyases PHR1 and PHR2 have been identified in nucleopolyhedrovirus (ChchNPV). Transient expression assays in insect cells showed that PHR1–EGFP fusion protein was localized in the nucleus. Early after transfection, PHR2–EGFP was distributed over the cytoplasm and nucleus but, over time, it became localized predominantly in the nucleus. Immunofluorescence analysis with anti-PHR2 antiserum showed that, early after transfection, non-fused PHR2 was already present mainly in the nucleus, suggesting that the fusion of PHR2 to EGFP hindered its nuclear import. Both PHR–EGFP fusion proteins strongly colocalized with chromosomes and spindle, aster and midbody structures during host-cell mitosis. When PHR2–EGFP-transfected cells were superinfected with multiple-nucleocapsid NPV (AcMNPV), the protein colocalized with virogenic stroma, the replication factories of baculovirus DNA. The collective data support the supposition that the PHR2 protein plays a role in baculovirus DNA repair.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.018044-0
2010-04-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/4/907.html?itemId=/content/journal/jgv/10.1099/vir.0.018044-0&mimeType=html&fmt=ahah

References

  1. Akasaka, S. & Yamamoto, K. ( 1991; ). Construction of Escherichia coli K12 phr deletion and insertion mutants by gene replacement. Mutat Res 254, 27–35.[CrossRef]
    [Google Scholar]
  2. Aubert, C., Vos, M. H., Mathis, P., Eker, A. P. M. & Brettel, K. ( 2000; ). Intraprotein radical transfer during photoactivation of DNA photolyase. Nature 405, 586–590.[CrossRef]
    [Google Scholar]
  3. Chiganças, V., Batista, L. F. Z., Brumatti, G., Amarante-Mendes, G. P., Yasui, A. & Menck, C. F. M. ( 2002; ). Photorepair of RNA polymerase arrest and apoptosis after ultraviolet irradiation in normal and XPB deficient rodent cells. Cell Death Differ 9, 1099–1107.[CrossRef]
    [Google Scholar]
  4. Deisenhofer, J. ( 2000; ). DNA photolyases and cryptochromes. Mutat Res DNA Repair 460, 143–149.[CrossRef]
    [Google Scholar]
  5. Essen, L. O. & Klar, T. ( 2006; ). Light-driven DNA repair by photolyases. Cell Mol Life Sci 63, 1266–1277.[CrossRef]
    [Google Scholar]
  6. Fritsch, E. & Huber, J. ( 1985; ). Inactivation of codling moth granulosis virus by UV-irradiation and temperature. Nachr Dtsch Pflanzenschutzd 37, 84–88.
    [Google Scholar]
  7. Hearst, J. E. ( 1995; ). The structure of photolyase: using photon energy for DNA repair. Science 268, 1858–1859.[CrossRef]
    [Google Scholar]
  8. Ignoffo, C. M. & Garcia, C. ( 1992; ). Combinations of environmental factors and simulated sunlight affecting activity of inclusion bodies of the Heliothis (Lepidoptera: Noctuidae) nucleopolyhedrosis virus. Environ Entomol 21, 210–213.[CrossRef]
    [Google Scholar]
  9. Jehle, J. A., Blissard, G. W., Bonning, B. C., Cory, J. S., Herniou, E. A., Rohrmann, G. F., Theilmann, D. A., Thiem, S. M. & Vlak, J. M. ( 2006; ). On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151, 1257–1266.[CrossRef]
    [Google Scholar]
  10. Kimura, S., Tahira, Y., Ishibashi, T., Mori, Y., Mori, T., Hashimoto, J. & Sakaguchi, K. ( 2004; ). DNA repair in higher plants; photoreactivation is the major DNA repair pathway in non-proliferating cells while excision repair (nucleotide excision repair and base excision repair) is active in proliferating cells. Nucleic Acids Res 32, 2760–2767.[CrossRef]
    [Google Scholar]
  11. Ljungman, M. & Zhang, F. ( 1996; ). Blockage of RNA polymerase as a possible trigger for u.v. light-induced apoptosis. Oncogene 13, 823–831.
    [Google Scholar]
  12. Mitchell, D. L. & Nairn, R. S. ( 1989; ). The biology of the (6–4) photoproduct. Photochem Photobiol 49, 805–819.[CrossRef]
    [Google Scholar]
  13. Nishigaki, R., Mitani, H. & Shima, A. ( 1998; ). Evasion of UVC-induced apoptosis by photorepair of cyclobutane pyrimidine dimers. Exp Cell Res 244, 43–53.[CrossRef]
    [Google Scholar]
  14. Rohrmann, G. F. ( 2008; ). The baculovirus replication cycle: effects on cells and insects. In Baculovirus Molecular Biology. Bethesda, MD: National Library of Medicine/NCBI. http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=bacvir&part=ch03.
  15. Rycyna, R. E. & Alderfer, J. L. ( 1985; ). UV irradiation of nucleic acids: formation, purification and solution conformational analysis of the ‘6–4 lesion’ of dTpdT. Nucleic Acids Res 13, 5949–5963.[CrossRef]
    [Google Scholar]
  16. Sancar, A. ( 1994; ). Structure and function of DNA photolyase. Biochemistry 33, 2–9.[CrossRef]
    [Google Scholar]
  17. Sancar, A. ( 2003; ). Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103, 2203–2237.[CrossRef]
    [Google Scholar]
  18. Sauer, G., Korner, R., Hanisch, A., Ries, A., Nigg, E. A. & Sillje, H. H. W. ( 2005; ). Proteome analysis of the human mitotic spindle. Mol Cell Proteomics 4, 35–43.
    [Google Scholar]
  19. Schul, W., Jans, J., Rijksen, Y. M. A., Klemann, K. H. M., Eker, A. P. M., de Wit, J., Nikaido, O., Nakajima, S., Yasui, A. & other authors ( 2002; ). Enhanced repair of cyclobutane pyrimidine dimers and improved UV resistance in photolyase transgenic mice. EMBO J 21, 4719–4729.[CrossRef]
    [Google Scholar]
  20. Setlow, R. B. & Carrier, W. L. ( 1966; ). Pyrimidine dimers in ultraviolet-irradiated DNA's. J Mol Biol 17, 237–254.[CrossRef]
    [Google Scholar]
  21. Smith, G. E. & Summers, M. D. ( 1978; ). Analysis of baculovirus genomes with restriction endonucleases. Virology 89, 517–527.[CrossRef]
    [Google Scholar]
  22. Sun, X., Sun, X., Van Der Werf, W., Vlak, J. M. & Hu, Z. ( 2004; ). Field inactivation of wild-type and genetically modified Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus in cotton. Biocontrol Sci Technol 14, 185–192.[CrossRef]
    [Google Scholar]
  23. Vail, P. V., Hostetter, D. L. & Hoffmann, D. F. ( 1999; ). Development of the multi-nucleocapsid nucleopolyhedroviruses (MNPVs) infectious to loopers (Lepidoptera: Noctuidae: Plusiinae) as microbial control agents. Integ Pest Manag Rev 4, 231–257.[CrossRef]
    [Google Scholar]
  24. van Oers, M. M., Herniou, E. A., Usmany, M., Messelink, G. J. & Vlak, J. M. ( 2004; ). Identification and characterization of a DNA photolyase-containing baculovirus from Chrysodeixis chalcites. Virology 330, 460–470.[CrossRef]
    [Google Scholar]
  25. van Oers, M. M., Abma-Henkens, M. H. C., Herniou, E. A., de Groot, J. C. W., Peters, S. & Vlak, J. M. ( 2005; ). Genome sequence of Chrysodeixis chalcites nucleopolyhedrovirus, a baculovirus with two DNA photolyase genes. J Gen Virol 86, 2069–2080.[CrossRef]
    [Google Scholar]
  26. van Oers, M. M., Lampen, M. H., Bajek, M. I., Vlak, J. M. & Eker, A. P. M. ( 2008; ). Active DNA photolyase encoded by a baculovirus from the insect Chrysodeixis chalcites. DNA Repair (Amst) 7, 1309–1318.[CrossRef]
    [Google Scholar]
  27. Wang, Y., Choi, J. Y., Roh, J. Y., Woo, S. D., Jin, B. R. & Je, Y. H. ( 2008; ). Molecular and phylogenetic characterization of Spodoptera litura granulovirus. J Microbiol 46, 704–708.[CrossRef]
    [Google Scholar]
  28. Williams, G. V. & Faulkner, P. ( 1997; ). Cytological changes and viral morphogenesis during baculovirus infection. In The Baculoviruses, pp. 61–108. Edited by L. K. Miller. New York: Plenum Press.
  29. Willis, L. G., Siepp, R., Stewart, T. M., Erlandson, M. A. & Theilmann, D. A. ( 2005; ). Sequence analysis of the complete genome of Trichoplusia ni single nucleopolyhedrovirus and the identification of a baculoviral photolyase gene. Virology 338, 209–226.[CrossRef]
    [Google Scholar]
  30. Xu, F., Vlak, J. M. & van Oers, M. M. ( 2008; ). Conservation of DNA photolyase genes in group II nucleopolyhedroviruses infecting plusiine insects. Virus Res 136, 58–64.[CrossRef]
    [Google Scholar]
  31. Yasui, A., Eker, A. P. M., Yasuhira, S., Yajima, H., Kobayashi, T., Takao, M. & Oikawa, A. ( 1994; ). A new class of DNA photolyases present in various organisms including aplacental mammals. EMBO J 13, 6143–6151.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.018044-0
Loading
/content/journal/jgv/10.1099/vir.0.018044-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error