1887

Abstract

Given the high similarity in genome content and organization between multiple nucleopolyhedrovirus (SeMNPV) and nucleopolyhedrovirus (AgseNPV), as well as the high percentages of similarity found between their 30 core genes, the specificity of these NPVs was analysed for the respective insect hosts, and . The LD for AgseNPV in second-instar larvae was 83 occlusion bodies per larva and the LT was 8.1 days. AgseNPV was orally infectious for , but the LD was 10 000-fold higher than for SeMNPV. SeMNPV was not infectious for larvae when administered orally, but an infection was established by injection into the haemocoel. Bypassing midgut entry by intrahaemocoelic inoculation suggested that the midgut is the major barrier in larvae for infection by SeMNPV. Delayed-early genes of SeMNPV are expressed in the midgut of larvae after oral infections, indicating that the virus is able to enter midgut epithelial cells and that it proceeds through the first phases of the infection process. The possible mechanisms of resistance to SeMNPV in infections are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.015842-0
2010-04-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/4/898.html?itemId=/content/journal/jgv/10.1099/vir.0.015842-0&mimeType=html&fmt=ahah

References

  1. Bourner, T. C. & Cory, J. S. ( 2004; ). Host range of an NPV and a GV isolated from the common cutworm, Agrotis segetum: pathogenicity within the cutworm complex. Biol Control 31, 372–379.[CrossRef]
    [Google Scholar]
  2. Burges, H. D., Croizer, G. & Huber, L. ( 1980; ). A review of safety tests on baculoviruses. Entomophaga 25, 329–339.[CrossRef]
    [Google Scholar]
  3. Cory, J. S. ( 2003; ). Ecological impacts of virus insecticides: host range and non-target organisms. In Environmental Impacts of Microbial Insecticides: Need and Methods for Risk Assessment, pp. 73–91. Edited by H. M. T. Hokkanen & A. E. Hajek. Dordrecht, the Netherlands: Kluwer Academic Publishers.
  4. Cory, J. S., Hirst, M. L., Sterling, P. H. & Speight, M. R. ( 2000; ). Narrow host range nucleopolyhedrovirus for control of the brown-tail moth, Euproctis chrysorrhoea (L) (Lepidoptera: Lymantriidae). Environ Entomol 29, 661–667.[CrossRef]
    [Google Scholar]
  5. Doyle, C. J., Hirst, M. L., Cory, J. S. & Entwistle, P. F. ( 1990; ). Risk assessment studies: detailed host range testing of wild-type cabbage moth, Mamestra brassicae (Lepidoptera: Noctuidae), nuclear polyhedrosis virus. Appl Environ Microbiol 56, 2704–2710.
    [Google Scholar]
  6. Faulkner, P., Kuzio, J., Williams, G. V. & Wilson, J. A. ( 1997; ). Analysis of p74, a PDV envelope protein of Autographa californica nucleopolyhedrovirus required for occlusion body infectivity in vivo. J Gen Virol 78, 3091–3100.
    [Google Scholar]
  7. Federici, B. A. ( 1997; ). Baculovirus pathogenesis. In The Baculoviruses, pp. 39–59. Edited by L. K. Miller. New York: Plenum Press.
  8. Finney, D. J. ( 1952; ). Probit Analysis: a Statistical Treatment of a Sigmoid Response Curve. Cambridge: Cambridge University Press.
  9. Gelernter, W. D. & Federici, B. A. ( 1986; ). Isolation, identification and determination of virulence of a nuclear polyhedrosis virus from the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Environ Entomol 15, 240–245.[CrossRef]
    [Google Scholar]
  10. Goulson, D. ( 2003; ). Can host susceptibility to baculovirus infection be predicted from host taxonomy or life history? Environ Entomol 32, 61–70.[CrossRef]
    [Google Scholar]
  11. Granados, R. R. ( 1978; ). Early events in the infection of Heliothis zea midgut cells by a baculovirus. Virology 90, 170–179.[CrossRef]
    [Google Scholar]
  12. Granados, R. R. & Lawler, A. L. ( 1981; ). In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108, 297–308.[CrossRef]
    [Google Scholar]
  13. Haas-Stapleton, E. J., Washburn, J. O. & Volkman, L. E. ( 2003; ). Pathogenesis of Autographa californica M nucleopolyhedrovirus in fifth instar Spodoptera frugiperda. J Gen Virol 84, 2033–2040.[CrossRef]
    [Google Scholar]
  14. Haas-Stapleton, E. J., Washburn, J. O. & Volkman, L. E. ( 2004; ). P74 mediates specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to primary cellular targets in the midgut epithelia of Heliothis virescens larvae. J Virol 78, 6786–6791.[CrossRef]
    [Google Scholar]
  15. Hara, K., Funakoshi, M., Tsuda, K. & Kawarabata, T. ( 1993; ). New Spodoptera exigua cell lines susceptible to Spodoptera exigua nuclear polyhedrosis virus. In Vitro Cell Dev Biol Anim 29A, 904–907.
    [Google Scholar]
  16. Harrison, R. L. & Lynn, D. E. ( 2008; ). New cell lines derived from the black cutworm, Agrotis ipsilon, that support replication of the A. ipsilon multiple nucleopolyhedrovirus and several group I nucleopolyhedroviruses. J Invertebr Pathol 99, 28–34.[CrossRef]
    [Google Scholar]
  17. Hefferon, K. L., Oomens, A. G. P., Monsma, S. A., Finnerty, C. M. & Blissard, G. W. ( 1999; ). Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology 258, 455–468.[CrossRef]
    [Google Scholar]
  18. Hegedus, D. D., Erlandson, M. A., Gillott, C. & Toprak, U. ( 2009; ). New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54, 285–302.[CrossRef]
    [Google Scholar]
  19. Hinks, C. F. & Byers, J. R. ( 1976; ). Biosystematics of the genus Euoxa (Lepidoptera: Noctuidae). V. Rearing procedures and life cycles of 36 species. Can Entomol 108, 1345–1357.[CrossRef]
    [Google Scholar]
  20. Horton, H. M. & Burand, J. P. ( 1993; ). Saturable attachment sites for polyhedron-derived baculovirus on insect cells and evidence for entry via direct membrane fusion. J Virol 67, 1860–1868.
    [Google Scholar]
  21. Hunter-Fujita, F. R., Entwistle, P. F., Evans, H. F. & Crook, N. E. ( 1998; ). Insect Viruses and Pest Management. Chichester, UK: Wiley.
  22. IJkel, W. F., van Strien, E. A., Heldens, J. G., Broer, R., Zuidema, D., Goldbach, R. W. & Vlak, J. M. ( 1999; ). Sequence and organization of the Spodoptera exigua multicapsid nucleopolyhedrovirus genome. J Gen Virol 80, 3289–3304.
    [Google Scholar]
  23. Jakubowska, A. K., van Oers, M. M., Ziemnicka, J., Lipa, J. J. & Vlak, J. M. ( 2005; ). Molecular characterization of Agrotis segetum nucleopolyhedrovirus from Poland. J Invertebr Pathol 90, 64–68.[CrossRef]
    [Google Scholar]
  24. Jakubowska, A. K., Peters, S. A., Ziemnicka, J., Vlak, J. M. & van Oers, M. M. ( 2006; ). Genome sequence of an enhancin gene-rich nucleopolyhedrovirus (NPV) from Agrotis segetum: collinearity with Spodoptera exigua multiple NPV. J Gen Virol 87, 537–551.[CrossRef]
    [Google Scholar]
  25. Lung, O., Westenberg, M., Vlak, J. M., Zuidema, D. & Blissard, G. W. ( 2002; ). Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F proteins from group II NPVs are functionally analogous to AcMNPV GP64. J Virol 76, 5729–5736.[CrossRef]
    [Google Scholar]
  26. Muñoz, D., Vlak, J. M. & Caballero, P. ( 1997; ). In vivo recombination between two strains of the genus nucleopolyhedrovirus in its natural host, Spodoptera exigua. Appl Environ Microbiol 63, 3025–3031.
    [Google Scholar]
  27. Ohkawa, T., Rowe, A. R. & Volkman, L. E. ( 2002; ). Identification of six Autographa californica multicapsid nucleopolyhedrovirus early genes that mediate nuclear localization of G-actin. J Virol 76, 12281–12287.[CrossRef]
    [Google Scholar]
  28. Ohkawa, T., Washburn, J. O., Sitapara, R., Sid, E. & Volkman, L. E. ( 2005; ). Specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to midgut cells of Heliothis virescens larvae is mediated by products of pif genes Ac119 and Ac022 but not by Ac115. J Virol 79, 15258–15264.[CrossRef]
    [Google Scholar]
  29. Peng, J., Zhong, J. & Granados, R. R. ( 1999; ). A baculovirus enhancin alters the permeability of a mucosal midgut peritrophic matrix from lepidopteran larvae. J Insect Physiol 45, 159–166.[CrossRef]
    [Google Scholar]
  30. Reed, C., Otvos, I. S., Reardon, R., Ragenovich, I. & Williams, H. L. ( 2003; ). Effects of long-term storage on the stability of OpMNPV DNA contained in TM Biocontrol-1. J Invertebr Pathol 84, 104–113.[CrossRef]
    [Google Scholar]
  31. Shapiro, M. & Argauer, R. ( 1997; ). Components of the stilbene optical brightener Tinopal LPW as enhancers for the gypsy moth (Lepidoptera: Lymantriidae) baculovirus. J Econ Entomol 90, 899–904.[CrossRef]
    [Google Scholar]
  32. Simón, O., Williams, T., López-Ferber, M. & Caballero, P. ( 2004; ). Virus entry or the primary infection cycle are not the principal determinants of host specificity of Spodoptera spp. nucleopolyhedroviruses. J Gen Virol 85, 2845–2855.[CrossRef]
    [Google Scholar]
  33. Slack, J. & Arif, B. A. ( 2007; ). The baculoviruses occlusion-derived virus: virion structure and function. Adv Virus Res 69, 99–165.
    [Google Scholar]
  34. Smits, P. H., van de Vrie, M. & Vlak, J. M. ( 1986; ). Oviposition of beet armyworm (Lepidoptera: Noctuidae) on greenhouse crops. Environ Entomol 15, 1189–1191.[CrossRef]
    [Google Scholar]
  35. Song, J., Wang, R., Deng, F., Wang, H. & Hu, Z. ( 2008; ). Functional studies of per os infectivity factors of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. J Gen Virol 89, 2331–2338.[CrossRef]
    [Google Scholar]
  36. Takatsuka, J., Okuno, S., Ishii, T., Nakai, M. & Kunimi, Y. ( 2007; ). Host range of two multiple nucleopolyhedroviruses isolated from Spodoptera litura. Biol Control 41, 264–271.[CrossRef]
    [Google Scholar]
  37. Vincze, T., Posfai, J. & Roberts, R. J. ( 2003; ). NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31, 3688–3691.[CrossRef]
    [Google Scholar]
  38. Vlak, J. M. ( 1979; ). The proteins of nonoccluded nuclear polyhedrosis virus produced in an established cell line of Spodoptera frugiperda. J Invertebr Pathol 34, 110–118.[CrossRef]
    [Google Scholar]
  39. Wang, P. & Granados, R. R. ( 2000; ). Calcofluor disrupts the midgut defense system in insects. Insect Biochem Mol Biol 30, 135–143.[CrossRef]
    [Google Scholar]
  40. Wang, P. & Granados, R. R. ( 2001; ). Molecular structure of peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch Insect Biochem Physiol 47, 110–118.[CrossRef]
    [Google Scholar]
  41. Washburn, J. O., Kirkpatrick, B. A. & Volkman, L. E. ( 1995; ). Comparative pathogenesis of Autographa californica M nuclear polyhedrosis virus in larvae of Trichoplusia ni and Heliothis virescens. Virology 209, 561–568.[CrossRef]
    [Google Scholar]
  42. Yanase, T., Yasunaga, C., Hara, T. & Kawarabata, T. ( 1998; ). Coinfection of Spodoptera exigua and Spodoptera frugiperda cell lines with the nuclear polyhedrosis viruses of Autographa californica and Spodoptera exigua. Intervirology 41, 244–252.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.015842-0
Loading
/content/journal/jgv/10.1099/vir.0.015842-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 898–906

Sequences of the specific primer sets used in this study [ PDF] (63 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error