- Volume 91, Issue 12, 2010
Volume 91, Issue 12, 2010
- Review
-
-
-
Global distribution of peste des petits ruminants virus and prospects for improved diagnosis and control
More LessViral diseases of farm animals, rather than being a diminishing problem across the world, are now appearing with regularity in areas where they have never been seen before. Across the developing world, viral pathogens such as peste des petits ruminants virus (PPRV) place a huge disease burden on agriculture, in particular affecting small ruminant production and in turn increasing poverty in some of the poorest parts of the world. PPRV is currently considered as one of the main animal transboundary diseases that constitutes a threat to livestock production in many developing countries, particularly in western Africa and south Asia. Infection of small ruminants with PPRV causes a devastating plague and as well as being endemic across much of the developing world, in recent years outbreaks of PPRV have occurred in the European part of Turkey. Indeed, the relevance of many once considered ‘exotic’ viruses is now also high across the European Union and may threaten further regions across the globe in the future. Here, we review the spread of PPRV across Africa, Asia and into Europe through submissions made to the OIE Regional Reference Laboratories. Further, we discuss current control methods and the development of further tools to aid both diagnosis of the disease and prevention.
-
-
- Animal
-
- RNA viruses
-
-
In vivo ribavirin activity against severe pandemic H1N1 influenza A/Mexico/4108/2009
The use of ribavirin in influenza treatment is a matter of debate. Due to adamantine- and oseltamivir-resistant strains of the current pandemic H1N1 (pdmH1N1) influenza viruses, the demand for alternative antiviral treatments has increased. This study demonstrated the potent antiviral effects of ribavirin in a mouse model of pdmH1N1 influenza infection (A/Mexico/4108/2009). It was found that treatment with 40 mg ribavirin kg−1 day−1 partially protected the animals if initiated immediately upon infection. Administration of similar concentrations on subsequent days or immediate therapy with lower doses efficiently delayed disease progression. Correlation studies showed a direct relationship between low viral titres in the lung during the early stages of infection with animal survival in ribavirin-treated animals. Reduced lung pathology in animals treated with ribavirin following infection also indicated the importance of immediate treatment. This study revealed the antiviral properties of ribavirin and these results justify comprehensive clinical studies for the use of ribavirin against influenza virus in future outbreaks.
-
-
-
New regulatory mechanisms for the intracellular localization and trafficking of influenza A virus NS1 protein revealed by comparative analysis of A/PR/8/34 and A/Sydney/5/97
More LessDuring influenza A virus infection, the NS1 protein is engaged in different functions in different intracellular compartments. In this study, we showed that the NS1 of A/PR/8/34 localized in different positions from that of A/Sydney/5/97 when transiently expressed in Madin–Darby canine kidney cells. Residue 221 of NS1 was identified to be a new key residue involved in the C-terminal nuclear localization signal (NLS) and nucleolar localization signal (NoLS) of NS1 from A/Sydney/5/97. Analysis of chimeric NS1 and further mutants showed that residues responsible for the binding between NS1 and the cleavage and polyadenylation specificity factor (CPSF) are correlated with the intracellular localization of transiently expressed NS1 proteins. Fluorescence loss in photobleaching imaging revealed that the NS1 protein with both functional NLSs and nuclear export signal (NES) was able to shuttle between the nucleus and cytoplasm. Drug inhibition experiments and fluorescence resonance energy transfer analysis suggested that NS1 was exported out of the cell nuclei via a Crm1-independent pathway. Moreover, it is likely that another cytoplasmic localization-related sequence exists in the NS1 protein other than the leucine-rich NES. These findings provide new insights into the mechanism of intracellular localization and trafficking of influenza A virus NS1 protein, which is important for understanding its function.
-
-
-
Rinderpest virus expressing enhanced green fluorescent protein as a separate transcription unit retains pathogenicity for cattle
More LessA full-length DNA clone of a virulent strain of rinderpest virus was constructed with the gene for the enhanced green fluorescent protein (eGFP) inserted as a separate transcription unit between the P and M genes. Rescue of the virus from the modified clone using reverse genetics generated a virus that grew to the same levels as the virus rescued from the unmodified DNA clone in cell culture. The recombinant virus expressed eGFP to a high level and was used to follow virus replication in real-time using live-cell imaging. Cattle infected with both the recombinant wild-type virus and the recombinant eGFP expressing virus developed clinical disease similar to that of the wild-type natural virus isolate. Detection of virus in circulating peripheral blood leukocytes was equivalent to that of the animals infected with the wild-type virus. The high level of expression of soluble eGFP by this virus allowed us to detect viral replication in infected animals by confocal microscopy. Imaging vibrating microtome sections by confocal microscopy provided good preservation of tissue and cellular architecture as well as revealing the sites of replication of the virus in different tissues of infected animals.
-
-
-
High-resolution epitope mapping for monoclonal antibodies to the structural protein Erns of classical swine fever virus using peptide array and random peptide phage display approaches
More LessThe structural glycoprotein Erns (an envelope protein with RNase activity) of classical swine fever virus (CSFV) is not well characterized with respect to its antigenic structure and organization. Here, we investigated the antigenic sites on Erns by raising mAbs against the Escherichia coli expressed Erns of CSFV strain Alfort/187 and defined the B-cell epitopes recognized by these antibodies. Eighteen mAbs to Erns were identified and they were classified as either immunoglobulin subclass G1 or G2b. Using an array of overlapping 12-mer peptides, spanning aa 27–227 of Erns, the epitopes for 12 mAbs were mapped to a high resolution of six to eight residues, which cluster in five discrete locations, 31GIWPEKIC38 (group I), 65NYTCCKLQ72 (group II), 127QARNRPTT134 (group III), 145SFAGTVIE152 (group IV) and 161VEDILY166 (group V). Two mAbs recognize two or more antigenic determinants, including the group II epitope. The epitopes for four other mAbs could not be mapped using the overlapping 12-mer peptides. Random peptide phage display with one mAb from each of all the groups except group V further identified some conserved residues that may be critical for binding antibodies, i.e. Trp33 in the epitope of group I, Leu71 in the epitope of group II, Gln127 and Apn130 in the epitope of group III, and Ser145 and Gly148 in the epitope of group IV. This study has provided new insights into the structure and organization of epitopes on the CSFV Erns and valuable epitope information for the rational design of vaccines, drugs and diagnostic immunoassays for CSFV.
-
-
-
Distribution of Far-Eastern tick-borne encephalitis virus subtype strains in the former Soviet Union
More LessEuropean and Asian viruses within the tick-borne encephalitis flavivirus complex are known to show temporal, spatial and phylogenetic relationships that imply a clinal pattern of evolution. However, the isolation of recognized Far-Eastern tick-borne encephalitis virus (TBEV) strains in the European region of the former Soviet Union (SU), i.e. thousands of kilometres west of the region in which they are considered endemic, appears to contradict this concept. Here, we present a parsimonious explanation for this apparent anomaly based on analysis of the dates and regions in which these non-endemic strains were isolated, together with their phylogenetic relationships and the records of redistribution of animals under the All-Union programme for acclimatization of game animals within the former SU. Our evidence supports the concept that the anomalous distribution of Far-Eastern TBEV strains in Europe and Siberia arose primarily as the result of the large-scale westward redistribution of game animals for economic purposes.
-
-
-
The cysteine protease domain of porcine reproductive and respiratory syndrome virus non-structural protein 2 antagonizes interferon regulatory factor 3 activation
More LessThere is growing evidence that porcine reproductive and respiratory syndrome virus (PRRSV) has developed mechanisms to subvert the host innate immune response. PRRSV non-structural protein 2 (Nsp2) was suggested previously as a potential interferon (IFN) antagonist. This study focused on Nsp2 to investigate its inhibitory mechanism of IFN induction. It was demonstrated that Nsp2 strongly inhibited IFN-β production by antagonizing activation of the IFN regulatory factor 3 (IRF-3) pathway induced by the Sendai virus (SeV). Further studies revealed that the cysteine protease domain (PL2) of Nsp2 was necessary for IFN antagonism. Additionally, both full-length Nsp2 and the PL2 protease domain of Nsp2 were found to inhibit SeV-induced phosphorylation and nuclear translocation of IRF-3. These findings suggest that Nsp2 is likely to play an important role in subversion of IRF-3-dependent innate antiviral defences, providing a basis for elucidating the mechanisms underlying PRRSV pathogenesis.
-
-
-
Full-length genome sequence of a simian immunodeficiency virus (SIV) infecting a captive agile mangabey (Cercocebus agilis) is closely related to SIVrcm infecting wild red-capped mangabeys (Cercocebus torquatus) in Cameroon
Simian immunodeficiency viruses (SIVs) are lentiviruses that infect an extensive number of wild African primate species. Here we describe for the first time SIV infection in a captive agile mangabey (Cercocebus agilis) from Cameroon. Phylogenetic analysis of the full-length genome sequence of SIVagi-00CM312 showed that this novel virus fell into the SIVrcm lineage and was most closely related to a newly characterized SIVrcm strain (SIVrcm-02CM8081) from a wild-caught red-capped mangabey (Cercocebus torquatus) from Cameroon. In contrast to red-capped mangabeys, no 24 bp deletion in CCR5 has been observed in the agile mangabey. Further studies on wild agile mangabeys are needed to determine whether agile and red-capped mangabeys are naturally infected with the same SIV lineage, or whether this agile mangabey became infected with an SIVrcm strain in captivity. However, our study shows that agile mangabeys are susceptible to SIV infection.
-
-
-
C-C chemokine receptor type 5 (CCR5) utilization of transmitted and early founder human immunodeficiency virus type 1 envelopes and sensitivity to small-molecule CCR5 inhibitors
More LessThe envelope glycoprotein (Env) of human immunodeficiency virus is key to viral entry of susceptible target cells and is therefore a major target for the design of vaccines and antiviral drugs. C-C chemokine receptor type 5 (CCR5)-using (R5) Env is the predominant phenotype associated with early transmission and acute infection. This study investigated the mechanism of CCR5 use and the sensitivity to CCR5 inhibitors of a panel of transmitted or early founder (T/F) Envs. The data showed that the majority of T/F Envs used CCR5 and that many also used CCR3, although less efficiently. Despite a similar ability to use wild-type CCR5, individual Envs differed significantly in their sensitivity to the CCR5 inhibitors maraviroc, CMPD-167 and SCH-412147. Inhibitor mapping experiments demonstrated that maraviroc, CMPD-167 and SCH-412147 interfered with the binding of CCR5 mAb to the C-terminal half of the second extracellular loop 2 of CCR5. Interestingly, Envs resistant to maraviroc, CMPD167 and SCH-412147 remained sensitive to TAK-779. Further studies indicated that the sensitivity of Envs to CCR5 inhibitors correlated with the molecular anatomy of CCR5 use, revealing that the inhibitor-sensitive Envs barely used the CCR5 N terminus, whereas resistant Envs showed a marked increase in its use. Taken together, these findings demonstrate that T/F R5 Envs are heterogeneous with respect to the mechanisms of CCR5 utilization. These data may have implications for therapeutic and prophylactic use of CCR5-based antiretrovirals.
-
-
-
No difference in Gag and Env immune-response profiles between vaccinated and non-vaccinated rhesus macaques that control immunodeficiency virus replication
Recent advances in human immunodeficiency virus (HIV) vaccine design have resulted in induction of strong CD4 T-cell proliferative and polyfunctional cytokine responses, which are also characteristic for long-term non-progressing (LTNP) HIV-infected individuals. However, limited information is available on the persistence of these responses after infection. Results from studies in non-human primates indicate that vaccine-induced immune responses are partially maintained upon viral infection and differ from the responses seen in non-vaccinated animals that typically progress to disease. However, it is unclear how these partially preserved responses compare to immune responses that are acquired naturally by LTNP animals. In this study, immune-response profiles were compared between vaccinated animals that, upon SHIV89.6p challenge, became infected but were able to control virus replication, and a group of animals having spontaneous control of this viral infection. Both groups were found to develop very similar immune responses with regard to induction of CD4 and CD8 T-cell polyfunctional cytokine responses, proliferative capacity and cytotoxic capacity, as measured by a standard 51Cr release assay and more direct ex vivo and in vivo CTL assays. Hence, vaccinated animals that become infected, but control infection, appear to establish immune responses that are similar to those elicited by long-term non-progressors.
-
-
-
Complete sequence of Great Island virus and comparison with the T2 and outer-capsid proteins of Kemerovo, Lipovnik and Tribec viruses (genus Orbivirus, family Reoviridae)
The complete nucleotide sequence of Great Island virus (GIV) genome was determined, along with genome segments (Seg) 1, 2 and 6 of Kemerovo (KEMV), Lipovnik (LIPV) and Tribec (TRBV) viruses. All four viruses, together with Broadhaven virus, are currently classified within the species Great Island virus and have been isolated from ticks, birds or humans. Sequence comparisons showed that Seg-4 of GIV encoded the outer-capsid protein responsible for cell attachment, although it was approximately half the length of its counterpart in the Culicoides or mosquito-transmitted orbiviruses. A second overlapping ORF (in the +2 reading frame) was identified in Seg-9 of GIV, encoding a putative dsRNA-binding protein. Phylogenetic analyses of the RNA-dependent RNA polymerase (Pol) and T2 protein amino acid sequences indicated that the tick-borne orbiviruses represent an ancestral group from which the mosquito-borne orbiviruses have evolved. This mirrors the evolutionary relationships between the arthropod vectors of these viruses, supporting a co-speciation hypothesis for these arboviruses and their arthropod-vectors. Phylogenetic analyses of the T2 proteins of KEMV, LIPV, TRBV and GIV (showing 82 % amino acid identity) correlated with the early classification of Great Island viruses as two distinct serocomplexes (Great Island and Kemerovo serocomplexes). Amino acid identity levels in the VP1(Pol) and T2 proteins between the two serocomplexes were 73 and 82 %, respectively, whilst those between previously characterized Orbivirus species are 53–73 % and 26–83 %, respectively. These data suggest that, despite limited genome segment reassortment between these two groups, their current classification within the same Orbivirus species could be re-evaluated.
-
-
-
Influence of human immunodeficiency virus and CD4 count on the prevalence of human papillomavirus in heterosexual couples
This study investigated the impact of human immunodeficiency virus (HIV) infection on genital human papillomavirus (HPV) in heterosexual couples. More HIV-positive men and women had genital HPV compared with HIV-negative men (77 vs 49 %; P<0.001) and women (74 vs 36 %; P<0.001). More men and women with partners who were HPV positive had HPV genital infection compared with those with HPV-negative partners (for men, 72 % compared with 40 %; P<0.001). Men with HIV-positive female partners were at greater risk of high-risk HPV and low-risk HPV (LR HPV) infection compared with men with HIV-negative female partners. This risk increased with decreasing CD4 count {≥350 ml−1: odds ratio [OR ], 2.37 [95 % confidence interval (CI), 1.47–3.83]; <350 ml−1: OR, 3.02 [95 % CI, 1.86–4.9]}. Conversely, the risk of HPV of any type was not found to differ between women with an HIV-positive or HIV-negative male partner. In men, HIV infection and female partner HIV-positive status were both associated with a higher risk of type-specific HPV concordance with their sexual partner, though the associations were not significant for LR HPV. In women, HIV infection and low CD4 count were significantly associated with increased risk of type-specific HPV concordance, but male partner HIV-positive status was not significantly associated with this concordance. In conclusion, male genital HPV prevalence and type-specific sharing were influenced by their own HIV-positive status and that of their female partner. In contrast, female genital HPV prevalence and HPV type-specific sharing were determined by their own HIV-positive status and not by that of their male partner.
-
- DNA viruses
-
-
Delineating the role of CD4+ T cells in the activation of human cytomegalovirus-specific immune responses following immunization with Ad-gBCMVpoly vaccine: implications for vaccination of immunocompromised individuals
More LessReconstitution of the virus-specific CD8+ T-cell response is crucial for the prevention of human cytomegalovirus (CMV)-associated pathogenesis in transplant patients and human immunodeficiency virus-infected individuals. Although adoptive T-cell immunotherapy has been used successfully in various clinical settings, prophylactic vaccination remains the most amenable strategy to prevent CMV disease. However, vaccination in clinical settings where the host is severely immunocompromised due to the loss of CD4+ T cells remains a significant challenge. This study investigated the efficacy of a chimeric CMV vaccine in a model setting that allowed studies on the generation of CD8+ T-cell memory responses in a transient CD4+ T-cell-deficient setting similar to that seen in immunocompromised patients. Immunization with an adenoviral CMV vaccine under transient helpless (complete CD4+ T-cell depletion) or help-deficient (partial CD4+ T-cell depletion) conditions demonstrated that induction of the effector CD8+ T-cell and humoral responses was almost completely eliminated under helpless conditions, and was gradually regained with the recovery of CD4+ T cells. However, this response failed to protect the host from viral infection, suggesting that lack of CD4+ T cells during vaccination can significantly impair the priming and maturation of CMV-specific immune responses. Furthermore, although the induction of CMV-specific immune responses was also significantly reduced in a help-deficient environment, these primed effector cells could mature normally and generate long-term polyfunctional memory responses capable of restricting virus replication in vivo. These results highlight the importance of monitoring CD4+ T-cell numbers before vaccination for the successful implementation of a CMV vaccine in an immunocompromised setting.
-
-
-
Phosphoinositide 3 kinase signalling may affect multiple steps during herpes simplex virus type-1 entry
More LessEarly interactions of herpes simplex virus type-1 (HSV-1) with cells lead to cytoskeletal changes facilitating filopodia formation and membrane fusion. Here, we demonstrate that phosphoinositide 3 kinase (PI3K) signalling may affect multiple steps during HSV-1 entry. An inhibitor of PI3K (LY294002) blocked HSV-1 entry and the blockage was cell-type- and gD receptor-independent. Entry inhibition was also observed with primary cultures of the human corneal fibroblasts and unrelated β- and γ-herpesviruses. Immunofluorescence analysis demonstrated that LY294002 negatively affected HSV-1-induced filopodia formation. Similar effects of the inhibitor were seen on HSV-1 glycoprotein-induced cell-to-cell fusion. Cells expressing HSV-1 glycoproteins (gB, gD, gH and gL) showed significantly less fusion with target cells in the presence of the inhibitor. Expression of a dominant-negative PI3K mutant negatively affected both entry and fusion. We also show that inhibition of PI3K signalling also affected RhoA activation required for HSV-1 entry into certain cell types.
-
-
-
Orf virus cell cycle regulator, PACR, competes with subunit 11 of the anaphase promoting complex for incorporation into the complex
More LessThe poxvirus anaphase promoting complex regulator (PACR) promotes viral replication by manipulating the anaphase promoting complex/cyclosome (APC/C), a multisubunit ubiquitin ligase complex with essential roles in cell cycle regulation. PACR has sequence similarities to APC/C subunit 11 (APC11) and associates with APC/C subunits. However, unlike APC11, expression of PACR disrupts APC/C functions. Here, we further investigated the interaction of PACR with APC/C. Following knockdown of APC1, the subunit linking APC11/APC2 to the rest of APC/C, PACR remained bound to APC2 but not to other, distal, subunits of the complex, suggesting PACR associates with APC/C via APC2. This was supported by the demonstration, in vitro, of a direct interaction between PACR and APC2. Moreover, the presence of PACR interfered with interactions between both APC11 and APC2. Based on these observations we propose that PACR competes with APC11 for the incorporation into APC/C.
-
-
-
Whole-genome characterization of a novel polyomavirus detected in fatally diseased canary birds
Polyomaviruses of birds are aetiological agents of acute inflammatory diseases in non-immunocompromised hosts, which is in contrast to mammalian polyomaviruses. VP4, an additional structural protein encoded by the viral genomes of the known avian polyomaviruses, has been suggested to contribute to pathogenicity through loss of cells following induction of apoptosis. Four distinct bird polyomaviruses have been identified so far, which infect crows, finches, geese and parrots. Using broad-spectrum PCR, a novel polyomavirus, tentatively designated canary polyomavirus (CaPyV), was detected in diseased canary birds (Serinus canaria) that died at an age of about 40 days. Intranuclear inclusion bodies were found in the liver, spleen and kidneys. The entire viral genome was amplified from a tissue sample using rolling-circle amplification. Phylogenetic analysis of the genome sequence indicated a close relationship between CaPyV and other avian polyomaviruses. Remarkably, an ORF encoding VP4 could not be identified in the CaPyV genome. Therefore, the mechanism of pathogenicity of CaPyV may be different from that of the other avian polyomaviruses.
-
-
-
Bovine parvovirus uses clathrin-mediated endocytosis for cell entry
Entry events of bovine parvovirus (BPV) were studied. Transmission electron micrographs of infected cells showed virus particles in cytoplasmic vesicles. Chemical inhibitors that block certain aspects of the cellular machinery were employed to assess viral dependency upon those cellular processes. Chlorpromazine, ammonium chloride, chloroquine and bafilamicin A1 were used to inhibit acidification of endosomes and clathrin-associated endocytosis. Nystatin was used as an inhibitor of the caveolae pathway. Cytochalasin D and ML-7 were used to inhibit actin and myosin functions, respectively. Nocodazole and colchicine were employed to inhibit microtubule activity. Virus entry was assessed by measuring viral transcription using real-time PCR, synthesis of capsid protein and assembly of infectious progeny virus in the presence of inhibitor blockage. The results indicated that BPV entry into embryonic bovine trachael cells utilizes endocytosis in clathrin-coated vesicles, is dependent upon acidification, and appears to be associated with actin and microtubule dependency. Evidence for viral entry through caveolae was not obtained. These findings provide a fuller understanding of the early cell-entry events of the replication cycle for members of the genus Bocavirus.
-
-
-
Transcription factor Spi-B binds unique sequences present in the tandem repeat promoter/enhancer of JC virus and supports viral activity
More LessProgressive multifocal leukoencephalopathy (PML) is an often fatal demyelinating disease caused by lytic infection of oligodendrocytes with JC virus (JCV). The development of PML in non-immunosuppressed individuals is a growing concern with reports of mortality in patients treated with mAb therapies. JCV can persist in the kidneys, lymphoid tissue and bone marrow. JCV gene expression is restricted by non-coding viral regulatory region sequence variation and cellular transcription factors. Because JCV latency has been associated with cells undergoing haematopoietic development, transcription factors previously reported as lymphoid specific may regulate JCV gene expression. This study demonstrates that one such transcription factor, Spi-B, binds to sequences present in the JCV promoter/enhancer and may affect early virus gene expression in cells obtained from human brain tissue. We identified four potential Spi-B-binding sites present in the promoter/enhancer elements of JCV sequences from PML variants and the non-pathogenic archetype. Spi-B sites present in the promoter/enhancers of PML variants alone bound protein expressed in JCV susceptible brain and lymphoid-derived cell lines by electromobility shift assays. Expression of exogenous Spi-B in semi- and non-permissive cells increased early viral gene expression. Strikingly, mutation of the Spi-B core in a binding site unique to the Mad-4 variant was sufficient to abrogate viral activity in progenitor-derived astrocytes. These results suggest that Spi-B could regulate JCV gene expression in susceptible cells, and may play an important role in JCV activity in the immune and nervous systems.
-
-
-
Removal of transposon target sites from the Autographa californica multiple nucleopolyhedrovirus fp25k gene delays, but does not prevent, accumulation of the few polyhedra phenotype
Low-cost, large-scale production of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) using continuous insect cell culture is seriously hindered by the accumulation of AcMNPV mutants. Specifically, few-polyhedra (FP) mutants, with a reduced yield of occluded virus (polyhedra) and decreased infectivity, usually accumulate upon passaging in cell culture. FP mutations result from transposon insertions in the baculovirus fp25k gene, leading to significantly reduced levels of FP25K protein synthesis. This study evaluated the effects of removing the transposon insertion sites from the wild-type baculovirus fp25k gene; the mutated virus was denoted Ac-FPm. Specifically, this study involved a detailed comparison of wild-type (WT) AcMNPV and Ac-FPm with regard to the proportion of cells having polyhedra, number of polyhedra per cell, the fraction of empty polyhedra, number of occlusion-derived viruses per polyhedron, number of nucleocapsids in the nuclei, FP25K protein synthesis and genetic analysis of the fp25k gene. Removal of TTAA transposon insertion sites from the fp25k gene stabilized FP25K protein synthesis and delayed the appearance of the FP phenotype from passage 5 to passage 10. Electron micrographs revealed that more virus particles were found inside the nuclei of cells infected with Ac-FPm than in the nuclei of cells infected with WT AcMNPV (at passage 10). Abnormalities, however, were observed in envelopment of nucleocapsids and virus particle occlusion within Ac-FPm polyhedra. Thus, the FP phenotype appeared in spite of continued FP25K protein synthesis, suggesting that mechanisms other than fp25k gene disruption can lead to the FP phenotype.
-
-
-
Proteomic analysis of Glossina pallidipes salivary gland hypertrophy virus virions for immune intervention in tsetse fly colonies
Many species of tsetse flies (Diptera: Glossinidae) can be infected by a virus that causes salivary gland hypertrophy (SGH). The genomes of viruses isolated from Glossina pallidipes (GpSGHV) and Musca domestica (MdSGHV) have recently been sequenced. Tsetse flies with SGH have reduced fecundity and fertility which cause a serious problem for mass rearing in the frame of sterile insect technique (SIT) programmes to control and eradicate tsetse populations in the wild. A potential intervention strategy to mitigate viral infections in fly colonies is neutralizing of the GpSGHV infection with specific antibodies against virion proteins. Two major GpSGHV virion proteins of about 130 and 50 kDa, respectively, were identified by Western analysis using a polyclonal rabbit antibody raised against whole GpSHGV virions. The proteome of GpSGHV, containing the antigens responsible for the immune-response, was investigated by liquid chromatography tandem mass spectrometry and 61 virion proteins were identified by comparison with the genome sequence. Specific antibodies were produced in rabbits against seven candidate proteins, including the ORF10/C-terminal fragment, ORF47 and ORF96 as well as proteins involved in peroral infectivity PIF-1 (ORF102), PIF-2 (ORF53), PIF-3 (ORF76) and P74 (ORF1). Antiserum against ORF10 specifically reacted to the 130 kDa protein in a Western blot analysis and to the envelope protein of GpSGHV, detected by using immunogold-electron microscopy. This result suggests that immune intervention of viral infections in colonies of G. pallidipes is a realistic option.
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)