1887

Abstract

Recent advances in human immunodeficiency virus (HIV) vaccine design have resulted in induction of strong CD4 T-cell proliferative and polyfunctional cytokine responses, which are also characteristic for long-term non-progressing (LTNP) HIV-infected individuals. However, limited information is available on the persistence of these responses after infection. Results from studies in non-human primates indicate that vaccine-induced immune responses are partially maintained upon viral infection and differ from the responses seen in non-vaccinated animals that typically progress to disease. However, it is unclear how these partially preserved responses compare to immune responses that are acquired naturally by LTNP animals. In this study, immune-response profiles were compared between vaccinated animals that, upon SHIV challenge, became infected but were able to control virus replication, and a group of animals having spontaneous control of this viral infection. Both groups were found to develop very similar immune responses with regard to induction of CD4 and CD8 T-cell polyfunctional cytokine responses, proliferative capacity and cytotoxic capacity, as measured by a standard Cr release assay and more direct and CTL assays. Hence, vaccinated animals that become infected, but control infection, appear to establish immune responses that are similar to those elicited by long-term non-progressors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.022772-0
2010-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/12/2974.html?itemId=/content/journal/jgv/10.1099/vir.0.022772-0&mimeType=html&fmt=ahah

References

  1. Acierno, P. M., Schmitz, J. E., Gorgone, D. A., Sun, Y., Santra, S., Seaman, M. S., Newberg, M. H., Mascola, J. R., Nabel, G. J. & other authors ( 2006; ). Preservation of functional virus-specific memory CD8+ T lymphocytes in vaccinated, simian human immunodeficiency virus-infected rhesus monkeys. J Immunol 176, 5338–5345.[CrossRef]
    [Google Scholar]
  2. Addo, M. M., Yu, X. G., Rathod, A., Cohen, D., Eldridge, R. L., Strick, D., Johnston, M. N., Corcoran, C., Wurcel, A. G. & other authors ( 2003; ). Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J Virol 77, 2081–2092.[CrossRef]
    [Google Scholar]
  3. Aichele, P., Brduscha-Riem, K., Oehen, S., Odermatt, B., Zinkernagel, R. M., Hengartner, H. & Pircher, H. ( 1997; ). Peptide antigen treatment of naive and virus-immune mice: antigen-specific tolerance versus immunopathology. Immunity 6, 519–529.[CrossRef]
    [Google Scholar]
  4. Altfeld, M., Addo, M. M., Rosenberg, E. S., Hecht, F. M., Lee, P. K., Vogel, M., Yu, X. G., Draenert, R., Johnston, M. N. & other authors ( 2003; ). Influence of HLA-B57 on clinical presentation and viral control during acute HIV-1 infection. AIDS 17, 2581–2591.[CrossRef]
    [Google Scholar]
  5. Altfeld, M., Kalife, E. T., Qi, Y., Streeck, H., Lichterfeld, M., Johnston, M. N., Burgett, N., Swartz, M. E., Yang, A. & other authors ( 2006; ). HLA alleles associated with delayed progression to AIDS contribute strongly to the initial CD8+ T cell response against HIV-1. PLoS Med 3, e403.[CrossRef]
    [Google Scholar]
  6. Amara, R. R., Villinger, F., Altman, J. D., Lydy, S. L., O'Neil, S. P., Staprans, S. I., Montefiori, D. C., Xu, Y., Herndon, J. G. & other authors ( 2001; ). Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292, 69–74.[CrossRef]
    [Google Scholar]
  7. Appay, V. & Rowland-Jones, S. L. ( 2002; ). Premature ageing of the immune system: the cause of AIDS? Trends Immunol 23, 580–585.[CrossRef]
    [Google Scholar]
  8. Barouch, D. H., Santra, S., Kuroda, M. J., Schmitz, J. E., Plishka, R., Buckler-White, A., Gaitan, A. E., Zin, R., Nam, J. H. & other authors ( 2001; ). Reduction of simian-human immunodeficiency virus 89.6P viremia in rhesus monkeys by recombinant modified vaccinia virus Ankara vaccination. J Virol 75, 5151–5158.[CrossRef]
    [Google Scholar]
  9. Betts, M. R., Ambrozak, D. R., Douek, D. C., Bonhoeffer, S., Brenchley, J. M., Casazza, J. P., Koup, R. A. & Picker, L. J. ( 2001; ). Analysis of total human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell responses: relationship to viral load in untreated HIV infection. J Virol 75, 11983–11991.[CrossRef]
    [Google Scholar]
  10. Betts, M. R., Nason, M. C., West, S. M., De Rosa, S. C., Migueles, S. A., Abraham, J., Lederman, M. M., Benito, J. M., Goepfert, P. A. & other authors ( 2006; ). HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107, 4781–4789.[CrossRef]
    [Google Scholar]
  11. Cao, Y., Qin, L., Zhang, L., Safrit, J. & Ho, D. D. ( 1995; ). Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N Engl J Med 332, 201–208.[CrossRef]
    [Google Scholar]
  12. Champagne, P., Ogg, G. S., King, A. S., Knabenhans, C., Ellefsen, K., Nobile, M., Appay, V., Rizzardi, G. P., Fleury, S. & other authors ( 2001; ). Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111.[CrossRef]
    [Google Scholar]
  13. Deeks, S. G. & Walker, B. D. ( 2007; ). Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27, 406–416.[CrossRef]
    [Google Scholar]
  14. Doria-Rose, N. A., Ohlen, C., Polacino, P., Pierce, C. C., Hensel, M. T., Kuller, L., Mulvania, T., Anderson, D., Greenberg, P. D. & other authors ( 2003; ). Multigene DNA priming-boosting vaccines protect macaques from acute CD4+-T-cell depletion after simian-human immunodeficiency virus SHIV89.6P mucosal challenge. J Virol 77, 11563–11577.[CrossRef]
    [Google Scholar]
  15. Egan, M. A., Chong, S. Y., Rose, N. F., Megati, S., Lopez, K. J., Schadeck, E. B., Johnson, J. E., Masood, A., Piacente, P. & other authors ( 2004; ). Immunogenicity of attenuated vesicular stomatitis virus vectors expressing HIV type 1 Env and SIV Gag proteins: comparison of intranasal and intramuscular vaccination routes. AIDS Res Hum Retroviruses 20, 989–1004.[CrossRef]
    [Google Scholar]
  16. Emu, B., Sinclair, E., Favre, D., Moretto, W. J., Hsue, P., Hoh, R., Martin, J. N., Nixon, D. F., McCune, J. M. & Deeks, S. G. ( 2005; ). Phenotypic, functional, and kinetic parameters associated with apparent T-cell control of human immunodeficiency virus replication in individuals with and without antiretroviral treatment. J Virol 79, 14169–14178.[CrossRef]
    [Google Scholar]
  17. Giraldo-Vela, J. P., Rudersdorf, R., Chung, C., Qi, Y., Wallace, L. T., Bimber, B., Borchardt, G. J., Fisk, D. L., Glidden, C. E. & other authors ( 2008; ). The major histocompatibility complex class II alleles Mamu-DRB1*1003 and -DRB1*0306 are enriched in a cohort of simian immunodeficiency virus-infected rhesus macaque elite controllers. J Virol 82, 859–870.[CrossRef]
    [Google Scholar]
  18. Goulder, P. J. R., Phillips, R. E., Colbert, R. A., McAdam, S., Ogg, G., Nowak, M. A., Grangrande, P., Luzzi, G., Morgan, B. & other authors ( 1997; ). Late escape from an immunodominant cytotoxic T lymphocyte response associated with progression to AIDS. Nat Med 3, 212–217.[CrossRef]
    [Google Scholar]
  19. Harari, A., Petitpierre, S., Vallelian, F. & Pantaleo, G. ( 2004; ). Skewed representation of functionally distinct populations of virus-specific CD4 T cells in HIV-1-infected subjects with progressive disease: changes after antiretroviral therapy. Blood 103, 966–972.
    [Google Scholar]
  20. Harari, A., Cellerai, C., Enders, F. B., Kostler, J., Codarri, L., Tapia, G., Boyman, O., Castro, E., Gaudieri, S. & other authors ( 2007; ). Skewed association of polyfunctional antigen-specific CD8 T cell populations with HLA-B genotype. Proc Natl Acad Sci U S A 104, 16233–16238.[CrossRef]
    [Google Scholar]
  21. Harari, A., Enders, F. B., Cellerai, C., Bart, P. A. & Pantaleo, G. ( 2009; ). Distinct profiles of cytotoxic granules in memory CD8 T cells correlate with function, differentiation stage, and antigen exposure. J Virol 83, 2862–2871.[CrossRef]
    [Google Scholar]
  22. Hel, Z., Nacsa, J., Tryniszewska, E., Tsai, W. P., Parks, R. W., Montefiori, D. C., Felber, B. K., Tartaglia, J., Pavlakis, G. N. & Franchini, G. ( 2002; ). Containment of simian immunodeficiency virus infection in vaccinated macaques: correlation with the magnitude of virus-specific pre- and postchallenge CD4+ and CD8+ T cell responses. J Immunol 169, 4778–4787.[CrossRef]
    [Google Scholar]
  23. Horton, H., Frank, I., Baydo, R., Jalbert, E., Penn, J., Wilson, S., McNevin, J. P., McSweyn, M. D., Lee, D. & other authors ( 2006a; ). Preservation of T cell proliferation restricted by protective HLA alleles is critical for immune control of HIV-1 infection. J Immunol 177, 7406–7415.[CrossRef]
    [Google Scholar]
  24. Horton, H., Havenar-Daughton, C., Lee, D., Moore, E., Cao, J., McNevin, J., Andrus, T., Zhu, H., Rubin, A. & other authors ( 2006b; ). Induction of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses in HIV vaccine trial participants who subsequently acquire HIV-1 infection. J Virol 80, 9779–9788.[CrossRef]
    [Google Scholar]
  25. Hubert, J. B., Burgard, M., Dussaix, E., Tamalet, C., Deveau, C., Le Chenadec, J., Chaix, M. L., Marchadier, E., Vilde, J. L., Delfraissy, J. F., Meyer, L. & Rouzioux, C. ( 2000; ). Natural history of serum HIV-1 RNA levels in 330 patients with a known date of infection. The SEROCO Study Group. AIDS 14, 123–131.[CrossRef]
    [Google Scholar]
  26. Kiepiela, P., Leslie, A. J., Honeyborne, I., Ramduth, D., Thobakgale, C., Chetty, S., Rathnavalu, P., Moore, C., Pfafferott, K. J. & other authors ( 2004; ). Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432, 769–775.[CrossRef]
    [Google Scholar]
  27. Koopman, G., Mortier, D., Hofman, S., Niphuis, H., Fagrouch, Z., Norley, S., Sutter, G., Liljestrom, P. & Heeney, J. L. ( 2004; ). Vaccine protection from CD4+ T-cell loss caused by simian immunodeficiency virus (SIV) mac251 is afforded by sequential immunization with three unrelated vaccine vectors encoding multiple SIV antigens. J Gen Virol 85, 2915–2924.[CrossRef]
    [Google Scholar]
  28. Koopman, G., Mortier, D., Hofman, S., Mathy, N., Koutsoukos, M., Ertl, P., Overend, P., van Wely, C., Thomsen, L. L. & other authors ( 2008; ). Immune-response profiles induced by human immunodeficiency virus type 1 vaccine DNA, protein or mixed-modality immunization: increased protection from pathogenic simian-human immunodeficiency virus viraemia with protein/DNA combination. J Gen Virol 89, 540–553.[CrossRef]
    [Google Scholar]
  29. Lefrère, J. J., Morand-Joubert, L., Mariotti, M., Bludau, H., Burghoffer, B., Petit, J. C. & Roudot-Thoraval, F. ( 1997; ). Even individuals considered as long-term nonprogressors show biological signs of progression after 10 years of human immunodeficiency virus infection. Blood 90, 1133–1140.
    [Google Scholar]
  30. Letvin, N. L., Huang, Y., Chakrabarti, B. K., Xu, L., Seaman, M. S., Beaudry, K., Korioth-Schmitz, B., Yu, F., Rohne, D. & other authors ( 2004; ). Heterologous envelope immunogens contribute to AIDS vaccine protection in rhesus monkeys. J Virol 78, 7490–7497.[CrossRef]
    [Google Scholar]
  31. Loffredo, J. T., Friedrich, T. C., Leon, E. J., Stephany, J. J., Rodrigues, D. S., Spencer, S. P., Bean, A. T., Beal, D. R., Burwitz, B. J. & other authors ( 2007; ). CD8+ T cells from SIV elite controller macaques recognize Mamu-B*08-bound epitopes and select for widespread viral variation. PLoS ONE 2, e1152.[CrossRef]
    [Google Scholar]
  32. Lyons, A. B. & Parish, C. R. ( 1994; ). Determination of lymphocyte division by flow cytometry. J Immunol Methods 171, 131–137.[CrossRef]
    [Google Scholar]
  33. Martin, M. P., Gao, X., Lee, J. H., Nelson, G. W., Detels, R., Goedert, J. J., Buchbinder, S., Hoots, K., Vlahov, D. & other authors ( 2002; ). Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31, 429–434.
    [Google Scholar]
  34. Martinez-Picado, J., Prado, J. G., Fry, E. E., Pfafferott, K., Leslie, A., Chetty, S., Thobakgale, C., Honeyborne, I., Crawford, H. & other authors ( 2006; ). Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J Virol 80, 3617–3623.[CrossRef]
    [Google Scholar]
  35. Mattapallil, J. J., Douek, D. C., Buckler-White, A., Montefiori, D., Letvin, N. L., Nabel, G. J. & Roederer, M. ( 2006; ). Vaccination preserves CD4 memory T cells during acute simian immunodeficiency virus challenge. J Exp Med 203, 1533–1541.[CrossRef]
    [Google Scholar]
  36. Migueles, S. A., Sabbaghian, M. S., Shupert, W. L., Bettinotti, M. P., Marincola, F. M., Martino, L., Hallahan, C. W., Selig, S. M., Schwartz, D. & other authors ( 2000; ). HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci U S A 97, 2709–2714.[CrossRef]
    [Google Scholar]
  37. Migueles, S. A., Laborico, A. C., Shupert, W. L., Sabbaghian, M. S., Rabin, R., Hallahan, C. W., Van Baarle, D., Kostense, S., Miedema, F. & other authors ( 2002; ). HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 3, 1061–1068.[CrossRef]
    [Google Scholar]
  38. Migueles, S. A., Osborne, C. M., Royce, C., Compton, A. A., Joshi, R. P., Weeks, K. A., Rood, J. E., Berkley, A. M., Sacha, J. B. & other authors ( 2008; ). Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity 29, 1009–1021.[CrossRef]
    [Google Scholar]
  39. Miura, T., Brockman, M. A., Brumme, C. J., Brumme, Z. L., Carlson, J. M., Pereyra, F., Trocha, A., Addo, M. M., Block, B. L. & other authors ( 2008; ). Genetic characterization of human immunodeficiency virus type 1 in elite controllers: lack of gross genetic defects or common amino acid changes. J Virol 82, 8422–8430.[CrossRef]
    [Google Scholar]
  40. Mooij, P., Nieuwenhuis, I. G., Knoop, C. J., Doms, R. W., Bogers, W. M., Ten Haaft, P. J., Niphuis, H., Koornstra, W., Bieler, K. & other authors ( 2004; ). Qualitative T-helper responses to multiple viral antigens correlate with vaccine-induced immunity to simian/human immunodeficiency virus infection. J Virol 78, 3333–3342.[CrossRef]
    [Google Scholar]
  41. Mooij, P., Balla-Jhagjhoorsingh, S. S., Koopman, G., Beenhakker, N., van Haaften, P., Baak, I., Nieuwenhuis, I. G., Kondova, I., Wagner, R. & other authors ( 2008; ). Differential CD4+ versus CD8+ T-cell responses elicited by different poxvirus-based human immunodeficiency virus type 1 vaccine candidates provide comparable efficacies in primates. J Virol 82, 2975–2988.[CrossRef]
    [Google Scholar]
  42. Muñoz, A., Kirby, A. J., He, Y. D., Margolick, J. B., Visscher, B. R., Rinaldo, C. R., Kaslow, R. A. & Phair, J. P. ( 1995; ). Long-term survivors with HIV-1 infection: incubation period and longitudinal patterns of CD4+ lymphocytes. J Acquir Immune Defic Syndr Hum Retrovirol 8, 496–505.[CrossRef]
    [Google Scholar]
  43. Oehen, S. & Brduscha-Riem, K. ( 1998; ). Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J Immunol 161, 5338–5346.
    [Google Scholar]
  44. Otting, N., Heijmans, C. M., Noort, R. C., de Groot, N. G., Doxiadis, G. G., van Rood, J. J., Watkins, D. I. & Bontrop, R. E. ( 2005; ). Unparalleled complexity of the MHC class I region in rhesus macaques. Proc Natl Acad Sci U S A 102, 1626–1631.[CrossRef]
    [Google Scholar]
  45. Otting, N., de Vos-Rouweler, A. J., Heijmans, C. M., de Groot, N. G., Doxiadis, G. G. & Bontrop, R. E. ( 2007; ). MHC class I A region diversity and polymorphism in macaque species. Immunogenetics 59, 367–375.[CrossRef]
    [Google Scholar]
  46. Otting, N., Heijmans, C. M., van der Wiel, M., de Groot, N. G., Doxiadis, G. G. & Bontrop, R. E. ( 2008; ). A snapshot of the Mamu-B genes and their allelic repertoire in rhesus macaques of Chinese origin. Immunogenetics 60, 507–514.[CrossRef]
    [Google Scholar]
  47. Pantaleo, G., Menzo, S., Vaccarezza, M., Graziosi, C., Cohen, O. J., Demarest, J. F., Montefiori, D., Orenstein, J. M., Fox, C. & other authors ( 1995; ). Studies in subjects with long-term nonprogressive human immnodeficiency virus infection. N Engl J Med 332, 209–216.[CrossRef]
    [Google Scholar]
  48. Pereyra, F., Addo, M. M., Kaufmann, D. E., Liu, Y., Miura, T., Rathod, A., Baker, B., Trocha, A., Rosenberg, R. & other authors ( 2008; ). Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J Infect Dis 197, 563–571.[CrossRef]
    [Google Scholar]
  49. Precopio, M. L., Betts, M. R., Parrino, J., Price, D. A., Gostick, E., Ambrozak, D. R., Asher, T. E., Douek, D. C., Harari, A. & other authors ( 2007; ). Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses. J Exp Med 204, 1405–1416.[CrossRef]
    [Google Scholar]
  50. Reimann, K. A., Parker, R. A., Seaman, M. S., Beaudry, K., Beddall, M., Peterson, L., Williams, K. C., Veazey, R. S., Montefiori, D. C. & other authors ( 2005; ). Pathogenicity of simian-human immunodeficiency virus SHIV-89.6P and SIVmac is attenuated in cynomolgus macaques and associated with early T-lymphocyte responses. J Virol 79, 8878–8885.[CrossRef]
    [Google Scholar]
  51. Rodés, B., Toro, C., Paxinos, E., Poveda, E., Martinez-Padial, M., Benito, J. M., Jimenez, V., Wrin, T., Bassani, S. & Soriano, V. ( 2004; ). Differences in disease progression in a cohort of long-term non-progressors after more than 16 years of HIV-1 infection. AIDS 18, 1109–1116.[CrossRef]
    [Google Scholar]
  52. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. ( 1999; ). Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712.[CrossRef]
    [Google Scholar]
  53. Schmitz, J. E., Kuroda, M. J., Santra, S., Sasseville, V. G., Simon, M. A., Lifton, M. A., Racz, P., Tenner-Racz, K., Dalesandro, M. & other authors ( 1999; ). Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860.[CrossRef]
    [Google Scholar]
  54. Sheppard, H. W., Lang, W., Ascher, M. S., Vittinghoff, E. & Winkelstein, W. ( 1993; ). The characterization of non-progressors: long-term HIV-1 infection with stable CD4+ T-cell levels. AIDS 7, 1159–1166.[CrossRef]
    [Google Scholar]
  55. Shiver, J. W., Fu, T. M., Chen, L., Casimiro, D. R., Davies, M. E., Evans, R. K., Zhang, Z. Q., Simon, A. J., Trigona, W. L. & other authors ( 2002; ). Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415, 331–335.[CrossRef]
    [Google Scholar]
  56. Soumelis, V., Scott, I., Gheyas, F., Bouhour, D., Cozon, G., Cotte, L., Huang, L., Levy, J. A. & Liu, Y. J. ( 2001; ). Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 98, 906–912.[CrossRef]
    [Google Scholar]
  57. Sun, Y., Schmitz, J. E., Buzby, A. P., Barker, B. R., Rao, S. S., Xu, L., Yang, Z. Y., Mascola, J. R., Nabel, G. J. & Letvin, N. L. ( 2006; ). Virus-specific cellular immune correlates of survival in vaccinated monkeys after simian immunodeficiency virus challenge. J Virol 80, 10950–10956.[CrossRef]
    [Google Scholar]
  58. Sun, Y., Santra, S., Schmitz, J. E., Roederer, M. & Letvin, N. L. ( 2008; ). Magnitude and quality of vaccine-elicited T-cell responses in the control of immunodeficiency virus replication in rhesus monkeys. J Virol 82, 8812–8819.[CrossRef]
    [Google Scholar]
  59. Ten Haaft, P., Verstrepen, B., Uberla, K., Rosenwirth, B. & Heeney, J. ( 1998; ). A pathogenic threshold of virus load defined in simian immunodeficiency virus- or simian-human immunodeficiency virus-infected macaques. J Virol 72, 10281–10285.
    [Google Scholar]
  60. van Baarle, D., Kostense, S., van Oers, M. H., Hamann, D. & Miedema, F. ( 2002; ). Failing immune control as a result of impaired CD8+ T-cell maturation: CD27 might provide a clue. Trends Immunol 23, 586–591.[CrossRef]
    [Google Scholar]
  61. Vogel, T. U., Allen, T. M., Altman, J. D. & Watkins, D. I. ( 2001; ). Functional impairment of simian immunodeficiency virus-specific CD8+ T cells during the chronic phase of infection. J Virol 75, 2458–2461.[CrossRef]
    [Google Scholar]
  62. Vogel, T. U., Horton, H., Fuller, D. H., Carter, D. K., Vielhuber, K., O'Connor, D. H., Shipley, T., Fuller, J., Sutter, G. & other authors ( 2002; ). Differences between T cell epitopes recognized after immunization and after infection. J Immunol 169, 4511–4521.[CrossRef]
    [Google Scholar]
  63. Yant, L. J., Friedrich, T. C., Johnson, R. C., May, G. E., Maness, N. J., Enz, A. M., Lifson, J. D., O'Connor, D. H., Carrington, M. & Watkins, D. I. ( 2006; ). The high-frequency major histocompatibility complex class I allele Mamu-B*17 is associated with control of simian immunodeficiency virus SIVmac239 replication. J Virol 80, 5074–5077.[CrossRef]
    [Google Scholar]
  64. Younes, S. A., Yassine-Diab, B., Dumont, A. R., Boulassel, M. R., Grossman, Z., Routy, J. P. & Sekaly, R. P. ( 2003; ). HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity. J Exp Med 198, 1909–1922.[CrossRef]
    [Google Scholar]
  65. Yue, F. Y., Kovacs, C. M., Dimayuga, R. C., Parks, P. & Ostrowski, M. A. ( 2004; ). HIV-1-specific memory CD4+ T cells are phenotypically less mature than cytomegalovirus-specific memory CD4+ T cells. J Immunol 172, 2476–2486.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.022772-0
Loading
/content/journal/jgv/10.1099/vir.0.022772-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2974–2984

Example of the CTL assay.

MHC class I typing (Mamu-A and -B) was conducted by sequencing full-length cDNAs.

[ Single PDF file] (1.3 MB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error