Early interactions of herpes simplex virus type-1 (HSV-1) with cells lead to cytoskeletal changes facilitating filopodia formation and membrane fusion. Here, we demonstrate that phosphoinositide 3 kinase (PI3K) signalling may affect multiple steps during HSV-1 entry. An inhibitor of PI3K (LY294002) blocked HSV-1 entry and the blockage was cell-type- and gD receptor-independent. Entry inhibition was also observed with primary cultures of the human corneal fibroblasts and unrelated - and -herpesviruses. Immunofluorescence analysis demonstrated that LY294002 negatively affected HSV-1-induced filopodia formation. Similar effects of the inhibitor were seen on HSV-1 glycoprotein-induced cell-to-cell fusion. Cells expressing HSV-1 glycoproteins (gB, gD, gH and gL) showed significantly less fusion with target cells in the presence of the inhibitor. Expression of a dominant-negative PI3K mutant negatively affected both entry and fusion. We also show that inhibition of PI3K signalling also affected RhoA activation required for HSV-1 entry into certain cell types.


Article metrics loading...

Loading full text...

Full text loading...



  1. Akhtar, J. & Shukla, D.(2009). Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J 276, 7228–7236.[CrossRef] [Google Scholar]
  2. Akhtar, J., Tiwari, V., Oh, M. J., Kovacs, M., Jani, A., Kovacs, S. K., Valyi-Nagy, T. & Shukla, D.(2008). HVEM and nectin-1 are the major mediators of herpes simplex virus 1 (HSV-1) entry into human conjunctival epithelium. Invest Ophthalmol Vis Sci 49, 4026–4035.[CrossRef] [Google Scholar]
  3. Browne, H., Bruun, B. & Minson, T.(2001). Plasma membrane requirements for cell fusion induced by herpes simplex virus type 1 glycoproteins gB, gD, gH and gL. J Gen Virol 82, 1419–1422. [Google Scholar]
  4. Carpenter, C. L., Auger, K. R., Chanudhuri, M., Yoakim, M., Schaffhausen, B., Shoelson, S. & Cantley, L. C.(1993). Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J Biol Chem 268, 9478–9483. [Google Scholar]
  5. Chang, J. C., Chang, H. H., Lin, C. T. & Lo, S. J.(2005). The integrin α6β1 modulation of PI3K and cdc42 activities induces dynamic filopodium formation in human platelets. J Biomed Sci 12, 881–898.[CrossRef] [Google Scholar]
  6. Clement, C., Tiwari, V., Scanlon, P., Vali-Nagy, T., Yue, B. Y. J. T. & Shukla, D.(2006). A novel for phagocytosis-like uptake in herpes simplex virus entry. J Cell Biol 174, 1009–1021.[CrossRef] [Google Scholar]
  7. Cocchi, F., Menotti, L., Mirandola, P., Lopez, M. & Campadelli-Fiume, G.(1998). The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus types 1 and 2 in human cells. J Virol 72, 9992–10002. [Google Scholar]
  8. Cocchi, F., Menotti, L., Dubreuil, P., Lopez, M. & Campadelli-Fiume, G.(2000). Cell-to-cell spread of wild-type herpes simplex virus type 1, but not of syncytial strains, is mediated by the immunoglobulin-like receptors that mediate virion entry, nectin1 (PRR1/HveC/HIgR) and nectin 2 (PRR2/HveB). J Virol 74, 3909–3917.[CrossRef] [Google Scholar]
  9. Coffer, P. J., Jin, J. & Woodgett, J. R.(1998). Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 335, 1–13. [Google Scholar]
  10. Davis-Poynter, N., Bell, S., Minson, T. & Browne, H.(1994). Analysis of the contribution of herpes simplex virus type 1 membrane proteins to the induction of cell-cell fusion. J Virol 68, 7586–7590. [Google Scholar]
  11. Dean, H. J., Terhune, S., Shieh, M. T., Susmarski, N. & Spear, P. G.(1994). Single amino acid substitutions in gD of herpes simplex virus 1 confer resistant to gD-mediated interference and cause cell type-dependent alterations in infectivity. Virology 199, 67–80.[CrossRef] [Google Scholar]
  12. Dimitrov, D. S.(2004). Virus entry: molecular mechanism and biomedical applications. Natl Rev Microbiol 2, 109–122.[CrossRef] [Google Scholar]
  13. Dohner, K. & Sodeik, B.(2005). The role of the cytoskeleton during viral infection. Curr Top Microbiol Immunol 285, 67–108. [Google Scholar]
  14. Farooq, A. V., Valyi-Nagy, T. & Shukla, D.(2010). Mediators and mechanisms of herpes simplex virus entry into ocular cells. Curr Eye Res 35, 445–450.[CrossRef] [Google Scholar]
  15. Forrester, A., Farrell, H., Wilkinson, G., Kaye, J., Davis-Pooynter, N. & Minson, T.(1992). Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. J Virol 66, 341–348. [Google Scholar]
  16. François, F. & Klotman, M. E.(2003). Phosphatidylinositol 3-kinase regulates human immunodeficiency virus type 1 replication following viral entry in primary CD4+ T lymphocytes and macrophages. J Virol 77, 2539–2549.[CrossRef] [Google Scholar]
  17. Gervais, M., Dugourd, C., Muller, L., Ardidie, C., Canton, B., Loviconi, L., Corvol, P., Chneiweiss, H. & Monnot, C.(2006). Akt down-regulates ERK1/2 nuclear localization and angiotensin II-induced cell proliferation through PEA-15. Mol Biol Cell 17, 3940–3951.[CrossRef] [Google Scholar]
  18. Greber, U. F.(2002). Signalling in viral entry. Cell Mol Life Sci 59, 608–626.[CrossRef] [Google Scholar]
  19. Greber, U. F. & Way, M.(2006). A superhighway to virus infection. Cell 124, 741–754.[CrossRef] [Google Scholar]
  20. Hiles, I. D., Otsu, M., Volinia, S., Fry, M. J., Gout, I., Dhand, R., Panayotou, G., Ruiz, L. F., Thomson, A. & other authors(1992). Phosphatidylinosital 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70, 419–429.[CrossRef] [Google Scholar]
  21. Jones, S. M., Klinghoffer, R., Prestwich, G. D., Toker, A. & Kazlauskas, A.(1999). PDGF induces an early and a late wave of PI 3-kinase activity, and only the late wave is required for progression through G1. Curr Biol 9, 512–521.[CrossRef] [Google Scholar]
  22. Jouvenet, N., Windsor, M., Rietdorf, J., Hawes, P., Monaghan, P., Way, M. & Wileman, T.(2006). African swine fever virus induces filopodia-like projections at the plasma membrane. Cell Microbiol 8, 1803–1811.[CrossRef] [Google Scholar]
  23. King, W. G., Mattaliano, M. D., Chan, T. O., Tsichlis, P. N. & Bruggee, J. S.(1997). Phosphatidylinositol 3-kinase is required for integrin-stimulated Akt and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol 17, 4406–4418. [Google Scholar]
  24. Lehmann, M. J., Sherer, N. M., Marks, C. B., Pypaert, M. & Mothes, W.(2005). Actin and myosin-driven movement of viruses along filopodia precedes their entry into cells. J Cell Biol 170, 317–325.[CrossRef] [Google Scholar]
  25. Liesegang, T. J.(2001). Herpes simplex virus epidemiology and ocular importance. Cornea 20, 1–13.[CrossRef] [Google Scholar]
  26. Liesegang, T. J., Melton, L. J., Daly, P. J. & Ilstrup, D. M.(1989). Epidemiology of ocular herpes simplex. Incidence in Rochester, Minn, 1950 through 1982. Arch Ophthalmol 107, 1155–1159.[CrossRef] [Google Scholar]
  27. Marozin, S., Prank, U. & Sodeik, B.(2004). Herpes simplex virus type 1 infection of polarized epithelial cells requires microtubules and access to receptors present at cell-cell contact sites. J Gen Virol 85, 775–786.[CrossRef] [Google Scholar]
  28. Marsh, M. & Helenius, A.(2006). Virus entry: open sesame. Cell 124, 729–740.[CrossRef] [Google Scholar]
  29. Montgomery, R. I., Warner, M. S., Lum, B. J. & Spear, P. G.(1996). Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87, 427–436.[CrossRef] [Google Scholar]
  30. Muggeridge, M. I.(2000). Characterization of cell-cell fusion mediated by herpes simplex virus 2 glycoproteins gB, gD, gH and gL in transfected cells. J Gen Virol 81, 2017–2027. [Google Scholar]
  31. Nicola, A. V. & Straus, S. E.(2004). Cellular and viral requirements for rapid endocytic entry of herpes simplex virus. J Virol 78, 7508–7517.[CrossRef] [Google Scholar]
  32. O'Donnell, C. D. & Shukla, D.(2008). The importance of heparan sulfate in herpesvirus infection. Virol Sin 23, 383–393.[CrossRef] [Google Scholar]
  33. O'Donnell, C. D. & Shukla, D.(2009). A novel function of heparan sulfate in the regulation of cell-cell fusion. J Biol Chem 284, 29654–29665.[CrossRef] [Google Scholar]
  34. O'Donnell, C. D., Tiwari, V., Oh, M.-J. & Shukla, D.(2006). A role for 3-O-sulfotransferase isoform-2 in assisting HSV-1 entry and spread. Virology 346, 452–459.[CrossRef] [Google Scholar]
  35. O'Donnell, C. D., Kovacs, M., Akhtar, J., Valyi-Nagy, T. & Shukla, D.(2010). Expanding the role of 3-O sulfated heparan sulfate in herpes simplex virus type-1 entry. Virology 397, 389–398.[CrossRef] [Google Scholar]
  36. Oh, M. J., Akhtar, J., Desai, P. & Shukla, D.(2010). A role for heparan sulfate in viral surfing. Biochem Biophys Res Commun 391, 176–181.[CrossRef] [Google Scholar]
  37. Pertel, P. E., Fridberg, A., Parish, M. L. & Spear, P. G.(2001). Cell fusion induced by herpes simplex virus glycoproteins gB, gD, and gH-gL requires a gD receptor but not necessarily heparan sulfate. Virology 279, 313–324.[CrossRef] [Google Scholar]
  38. Radtke, K., Dohner, K. & Sodeik, B.(2006). Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell Microbiol 8, 387–400.[CrossRef] [Google Scholar]
  39. Roizman, B. & Sears, A. E.(1996). Herpes simplex viruses and their replication. In Virology, 3rd edn, vol. 2, pp. 2231–2295. Edited by Fields, B. N., Knipe, D. M., Chanock, R. M., Hirsch, M. S., Melnick, J. L., Monath, T. P. & Roizman, B.. Philadelphia. : Lippincott-Raven. [Google Scholar]
  40. Satoh, T., Arii, J., Suenaga, T., Wang, J., Kogure, A., Uehori, J., Arase, N., Shiratori, I., Tanaka, S. & other authors(2008). PILRα is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B. Cell 132, 935–944.[CrossRef] [Google Scholar]
  41. Sherer, N. M., Lehmann, M. J., Jimenez-Soto, L., Horensavitz, C., Pypaert, M. & Mothes, W.(2007). Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9, 310–315.[CrossRef] [Google Scholar]
  42. Shukla, D. & Spear, P. G.(2001). Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest 108, 503–510.[CrossRef] [Google Scholar]
  43. Shukla, D., Liu, J., Blaiklock, P., Shworak, N. W., Bai, X., Esko, J. D., Cohen, G. H., Eisenberg, R. J., Rosenberg, R. D. & Spear, P. G.(1999). A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99, 13–22.[CrossRef] [Google Scholar]
  44. Shukla, D., Scanlan, P. M., Tiwari, V., Sheth, V., Clement, C., Guzman-Hartman, G., Dermody, T. S. & Valyi-Nagy, T.(2006). Expression of nectin-1 in the normal and HSV-1-infected murine nervous system. Appl Immunohistochem Mol Mor 14, 341–347.[CrossRef] [Google Scholar]
  45. Shukla, S. Y., Singh, Y. K. & Shukla, D.(2009). Role of nectin-1, HVEM, and PILR-α in HSV-2 entry into human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 50, 2878–2887.[CrossRef] [Google Scholar]
  46. Sieczkarski, S. B. & Whittaker, G. R.(2005). Viral entry. Curr Top Microbiol Immunol 285, 1–23. [Google Scholar]
  47. Skolnik, E. Y., Margolis, B., Mohammadi, M., Lowenstein, E., Fisher, R., Drepps, A., Ullrich, A. & Schlessonger, J.(1991). Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target protein for receptor tyrosine kinases. Cell 65, 83–90.[CrossRef] [Google Scholar]
  48. Smith, J. L., Lidke, D. S. & Ozbun, M. A.(2008). Virus activated filopodia promote human papillomavirus type 31 uptake from the extracellular matrix. Virology 381, 16–21.[CrossRef] [Google Scholar]
  49. Spear, P. G., Eisenberg, R. J. & Cohen, G. H.(2000). Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275, 1–8.[CrossRef] [Google Scholar]
  50. Stoyanov, B., Volinia, S., Hanck, T., Rubio, I., Loubtchenkov, M., Malek, D., Stoyanova, S., Vanhaesebroeck, B., Dhand, R. & other authors(1995). Cloning and characterization of a G-protein-activated human phosphoinositide-3 kinase. Science 269, 690–693.[CrossRef] [Google Scholar]
  51. Terry-Allison, T., Montgomery, R. I., Warner, M. S., Greaghty, R. J. & Spear, P. G.(2001). Contribution of gD receptors and glycosaminoglycan sulfation to cell fusion mediated by herpes simplex virus 1. Virus Res 74, 39–45.[CrossRef] [Google Scholar]
  52. Tiwari, V., Clement, C., Duncan, M. B., Chen, J., Liu, J. & Shukla, D.(2004). A role for 3-O-sulfated heparan in cell fusion induced by herpes simplex virus type 1. J Gen Virol 85, 805–809.[CrossRef] [Google Scholar]
  53. Tiwari, V., Clement, C., Scanlan, P. M., Kowlessur, D., Yue, B. Y. & Shukla, D.(2005a). A role for herpesvirus entry mediator as the receptor for herpes simplex virus 1 entry into primary human trabecular meshwork cells. J Virol 79, 13173–13179.[CrossRef] [Google Scholar]
  54. Tiwari, V., Clement, C., Xu, D., Valyi-Nagy, T., Yue, B. Y., Liu, J. & Shukla, D.(2006). Role for 3-O sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary corneal fibroblasts. J Virol 80, 8970–8980.[CrossRef] [Google Scholar]
  55. Tiwari, V., O'Donnell, C. D., Oh, M. J., Valyi-Nagy, T. & Shukla, D.(2005b). A role for 3-O-sulfotransferase isoform-4 in assisting HSV-1 entry and spread. Biochem Biophys Res Commun 338, 930–937.[CrossRef] [Google Scholar]
  56. Tiwari, V., ten Dam, G. B., Yue, B. Y. J. T., van Kuppevelt, T. H. & Shukla, D.(2007). Requirements of 3-O-sulfated heapran sulfate during cell fusion in primary cultures of human corneal fibroblasts. FEBS Lett 581, 4468–4472.[CrossRef] [Google Scholar]
  57. Tiwari, V., Oh, M. J., Kovacs, M. & Shukla, D.(2008). Role for Nectin-1 in herpes simplex virus 1 entry and spread into retinal pigment epithelial cells. FEBS J 275, 5272–5285.[CrossRef] [Google Scholar]
  58. Turner, A., Bruun, B., Minson, T. & Brwone, H.(1998). Glycoprotein gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J Virol 72, 873–875. [Google Scholar]
  59. Ueki, K., Algenstaedt, P., Mauvais-Jarvis, F. & Kahn, C. R.(2000). Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85α regulatory subunit. Mol Cell Biol 20, 8035–8046.[CrossRef] [Google Scholar]
  60. Veettil, M. V., Sharma-Walia, N., Sadagopan, S., Raghu, H., Sivakumar, R., Naranatt, P. P. & Chandran, B.(2006). RhoA-GTPase facilitates entry of Kaposi's sarcoma-associated herpesvirus into adherent target cells in a Src-dependent manner. J Virol 80, 11432–11446.[CrossRef] [Google Scholar]
  61. Wennstrom, S. & Downward, J.(1999). Role of phosphoinositide 3-kinase in activation of Ras and mitogen-activated protein kinase by epidermal growth factor. Mol Cell Biol 19, 4279–4288. [Google Scholar]
  62. Whitley, R. J., Kimberlin, D. W. & Roizman, B.(1998). Herpes simplex viruses. Clin Infect Dis 26, 541–553.[CrossRef] [Google Scholar]
  63. Xia, G., Chen, J., Tiwari, V., Ju, W., Li, J.-P., Malmstrom, A., Shukla, D. & Liu, J.(2002). Heparan sulfate 3-O-sulfotransferase isoform 5 generates both an antithrombin-binding site and an entry receptor for herpes simplex virus, type 1. J Biol Chem 277, 37912–37919.[CrossRef] [Google Scholar]
  64. Xu, D., Tiwari, V., Xia, G., Clement, C., Shukla, D. & Liu, J.(2005). Characterization of heparan sulphate 3-O-sulphotransferase isoform 6 and its role in assisting the entry of herpes simplex virus type 1. Biochem J 385, 451–459.[CrossRef] [Google Scholar]
  65. Yue, B. Y. J. T. & Baum, J. L.(1981). Studies of corneas in vivo and in vitro. Vision Res 21, 41–43.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error