1887

Abstract

Progressive multifocal leukoencephalopathy (PML) is an often fatal demyelinating disease caused by lytic infection of oligodendrocytes with JC virus (JCV). The development of PML in non-immunosuppressed individuals is a growing concern with reports of mortality in patients treated with mAb therapies. JCV can persist in the kidneys, lymphoid tissue and bone marrow. JCV gene expression is restricted by non-coding viral regulatory region sequence variation and cellular transcription factors. Because JCV latency has been associated with cells undergoing haematopoietic development, transcription factors previously reported as lymphoid specific may regulate JCV gene expression. This study demonstrates that one such transcription factor, Spi-B, binds to sequences present in the JCV promoter/enhancer and may affect early virus gene expression in cells obtained from human brain tissue. We identified four potential Spi-B-binding sites present in the promoter/enhancer elements of JCV sequences from PML variants and the non-pathogenic archetype. Spi-B sites present in the promoter/enhancers of PML variants alone bound protein expressed in JCV susceptible brain and lymphoid-derived cell lines by electromobility shift assays. Expression of exogenous Spi-B in semi- and non-permissive cells increased early viral gene expression. Strikingly, mutation of the Spi-B core in a binding site unique to the Mad-4 variant was sufficient to abrogate viral activity in progenitor-derived astrocytes. These results suggest that Spi-B could regulate JCV gene expression in susceptible cells, and may play an important role in JCV activity in the immune and nervous systems.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.023184-0
2010-12-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/12/3042.html?itemId=/content/journal/jgv/10.1099/vir.0.023184-0&mimeType=html&fmt=ahah

References

  1. Amemiya, K., Traub, R., Durham, L. & Major, E. O. ( 1989; ). Interaction of a nuclear factor-1-like protein with the regulatory region of the human polyomavirus JC virus. J Biol Chem 264, 7025–7032.
    [Google Scholar]
  2. Amemiya, K., Traub, R., Durham, L. & Major, E. O. ( 1992; ). Adjacent nuclear factor-1 and activator protein binding sites in the enhancer of the neurotropic JC virus. A common characteristic of many brain-specific genes. J Biol Chem 267, 14204–14211.
    [Google Scholar]
  3. Andrews, N. C. & Faller, D. V. ( 1991; ). A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19, 2499.[CrossRef]
    [Google Scholar]
  4. Araki, K., Maeda, H., Wang, J., Kitamura, D. & Watanabe, T. ( 1988; ). Purification of a nuclear trans-acting factor involved in the regulated transcription of a human immunoglobulin heavy chain gene. Cell 53, 723–730.[CrossRef]
    [Google Scholar]
  5. Arguello, M., Sgarbanti, M., Hernandez, E., Mamane, Y., Sharma, S., Servant, M., Lin, R. & Hiscott, J. ( 2003; ). Disruption of the B-cell specific transcriptional program in HHV-8 associated primary effusion lymphoma cell lines. Oncogene 22, 964–973.[CrossRef]
    [Google Scholar]
  6. Ault, G. S. & Stoner, G. L. ( 1993; ). Human polyomavirus JC promoter/enhancer rearrangement patterns from progressive multifocal leukoencephalopathy brain are unique derivatives of a single archetypal structure. J Gen Virol 74, 1499–1507.[CrossRef]
    [Google Scholar]
  7. Bartholdy, B., Du Roure, C., Bordon, A., Emslie, D., Corcoran, L. M. & Matthias, P. ( 2006; ). The Ets factor Spi-B is a direct critical target of the coactivator OBF-1. Proc Natl Acad Sci U S A 103, 11665–11670.[CrossRef]
    [Google Scholar]
  8. Biosystems, A. ( 2008; ). Guide to Performing Relative Quantitation of Gene Expression Using Real-Time Quantitative PCR, pp. 44–51. Technical Note. Foster City. : Applied Biosystems.
    [Google Scholar]
  9. Chang, C. F., Gallia, G. L., Muralidharan, V., Chen, N. N., Zoltick, P., Johnson, E. & Khalili, K. ( 1996; ). Evidence that replication of human neurotropic JC virus DNA in glial cells is regulated by the sequence-specific single-stranded DNA-binding protein Pur α. J Virol 70, 4150–4156.
    [Google Scholar]
  10. Chen, N. N. & Khalili, K. ( 1995; ). Transcriptional regulation of human JC polyomavirus promoters by cellular proteins YB-1 and Pur α in glial cells. J Virol 69, 5843–5848.
    [Google Scholar]
  11. Chen, H., Ray-Gallet, D., Zhang, P., Hetherington, C. J., Gonzalez, D. A., Zhang, D. E., Moreau-Gachelin, F. & Tenen, D. G. ( 1995a; ). PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 11, 1549–1560.
    [Google Scholar]
  12. Chen, H. M., Zhang, P., Voso, M. T., Hohaus, S., Gonzalez, D. A., Glass, C. K., Zhang, D. E. & Tenen, D. G. ( 1995b; ). Neutrophils and monocytes express high levels of PU.1 (Spi-1) but not Spi-B. Blood 85, 2918–2928.
    [Google Scholar]
  13. Chen, N. N., Chang, C. F., Gallia, G. L., Kerr, D. A., Johnson, E. M., Krachmarov, C. P., Barr, S. M., Frisque, R. J., Bollag, B. & Khalili, K. ( 1995c; ). Cooperative action of cellular proteins YB-1 and Pur α with the tumor antigen of the human JC polyomavirus determines their interaction with the viral lytic control element. Proc Natl Acad Sci U S A 92, 1087–1091.[CrossRef]
    [Google Scholar]
  14. Dahl, R., Ramirez-Bergeron, D. L., Rao, S. & Simon, M. C. ( 2002; ). Spi-B can functionally replace PU.1 in myeloid but not lymphoid development. EMBO J 21, 2220–2230.[CrossRef]
    [Google Scholar]
  15. Damania, B. & Alwine, J. C. ( 1996; ). TAF-like function of SV40 large T antigen. Genes Dev 10, 1369–1381.[CrossRef]
    [Google Scholar]
  16. Daniel, A. M. & Frisque, R. J. ( 1993; ). Transcription initiation sites of prototype and variant JC virus early and late messenger RNAs. Virology 194, 97–109.[CrossRef]
    [Google Scholar]
  17. Daniel, A. M., Swenson, J. J., Mayreddy, R. P., Khalili, K. & Frisque, R. J. ( 1996; ). Sequences within the early and late promoters of archetype JC virus restrict viral DNA replication and infectivity. Virology 216, 90–101.[CrossRef]
    [Google Scholar]
  18. Dekoninck, A., Calomme, C., Nizet, S., de Launoit, Y., Burny, A., Ghysdael, J. & Van Lint, C. ( 2003; ). Identification and characterization of a PU.1/Spi-B binding site in the bovine leukemia virus long terminal repeat. Oncogene 22, 2882–2896.[CrossRef]
    [Google Scholar]
  19. Dorn, A., Fehling, H., Koch, W., le Meur, M., Gerlinger, P., Benoist, C. & Mathis, D. ( 1988; ). B-cell control region at the 5′ end of a major histocompatibility complex class II gene: sequences and factors. Mol Cell Biol 8, 3975–3987.
    [Google Scholar]
  20. Erselius, J. R., Jostes, B., Hatzopoulos, A. K., Mosthaf, L. & Gruss, P. ( 1990; ). Cell-type-specific control elements of the lymphotropic papovavirus enhancer. J Virol 64, 1657–1666.
    [Google Scholar]
  21. Frisque, R. J. ( 1983; ). Regulatory sequences and virus-cell interactions of JC virus. Prog Clin Biol Res 105, 41–59.
    [Google Scholar]
  22. Frisque, R. J., Bream, G. L. & Cannella, M. T. ( 1984; ). Human polyomavirus JC virus genome. J Virol 51, 458–469.
    [Google Scholar]
  23. Garrett-Sinha, L. A., Su, G. H., Rao, S., Kabak, S., Hao, Z., Clark, M. R. & Simon, M. C. ( 1999; ). PU.1 and Spi-B are required for normal B cell receptor-mediated signal transduction. Immunity 10, 399–408.
    [Google Scholar]
  24. Garrett-Sinha, L. A., Hou, P., Wang, D., Grabiner, B., Araujo, E., Rao, S., Yun, T. J., Clark, E. A., Simon, M. C. & Clark, M. R. ( 2005; ). Spi-1 and Spi-B control the expression of the Grap2 gene in B cells. Gene 353, 134–146.[CrossRef]
    [Google Scholar]
  25. Gerster, T., Matthias, P., Thali, M., Jiricny, J. & Schaffner, W. ( 1987; ). Cell type-specificity elements of the immunoglobulin heavy chain gene enhancer. EMBO J 6, 1323–1330.
    [Google Scholar]
  26. Gosert, R., Kardas, P., Major, E. O. & Hirsch, H. H. ( 2010; ). Rearranged JC virus non-coding control regions found in progressive multifocal leukoencephalopathy increase virus early gene expression and replication rate. J Virol 84, 10448–10456.[CrossRef]
    [Google Scholar]
  27. Gruda, M. C., Zabolotny, J. M., Xiao, J. H., Davidson, I. & Alwine, J. C. ( 1993; ). Transcriptional activation by simian virus 40 large T antigen: interactions with multiple components of the transcription complex. Mol Cell Biol 13, 961–969.
    [Google Scholar]
  28. Hagemeier, C., Bannister, A. J., Cook, A. & Kouzarides, T. ( 1993; ). The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB. Proc Natl Acad Sci U S A 90, 1580–1584.[CrossRef]
    [Google Scholar]
  29. Hensold, J. O., Stratton, C. A., Barth, D. & Galson, D. L. ( 1996; ). Expression of the transcription factor, Spi-1 (PU.1), in differentiating murine erythroleukemia cells Is regulated post-transcriptionally. Evidence for differential stability of transcription factor mRNAs following inducer exposure. J Biol Chem 271, 3385–3391.[CrossRef]
    [Google Scholar]
  30. Houff, S. A., Major, E. O., Katz, D. A., Kufta, C. V., Sever, J. L., Pittaluga, S., Roberts, J. R., Gitt, J., Saini, N. & Lux, W. ( 1988; ). Involvement of JC virus-infected mononuclear cells from the bone marrow and spleen in the pathogenesis of progressive multifocal leukoencephalopathy. N Engl J Med 318, 301–305.[CrossRef]
    [Google Scholar]
  31. Iida, T., Kitamura, T., Guo, J., Taguchi, F., Aso, Y., Nagashima, K. & Yogo, Y. ( 1993; ). Origin of JC polyomavirus variants associated with progressive multifocal leukoencephalopathy. Proc Natl Acad Sci U S A 90, 5062–5065.[CrossRef]
    [Google Scholar]
  32. Jensen, P. N. & Major, E. O. ( 1999; ). Viral variant nucleotide sequences help expose leukocytic positioning in the JC virus pathway to the CNS. J Leukoc Biol 65, 428–438.
    [Google Scholar]
  33. Kenney, S., Natarajan, V. & Salzman, N. P. ( 1986a; ). Mapping 5′ termini of JC virus late RNA. J Virol 58, 216–219.
    [Google Scholar]
  34. Kenney, S., Natarajan, V., Selzer, G. & Salzman, N. P. ( 1986b; ). Mapping 5′ termini of JC virus early RNAs. J Virol 58, 651–654.
    [Google Scholar]
  35. Kerr, D., Chang, C. F., Chen, N., Gallia, G., Raj, G., Schwartz, B. & Khalili, K. ( 1994; ). Transcription of a human neurotropic virus promoter in glial cells: effect of YB-1 on expression of the JC virus late gene. J Virol 68, 7637–7643.
    [Google Scholar]
  36. Khalili, K., Khoury, G. & Brady, J. ( 1986; ). Spacing between simian virus 40 early transcriptional control sequences is important for regulation of early RNA synthesis and gene expression. J Virol 60, 935–942.
    [Google Scholar]
  37. Kim, J., Woolridge, S., Biffi, R., Borghi, E., Lassak, A., Ferrante, P., Amini, S., Khalili, K. & Safak, M. ( 2003; ). Members of the AP-1 family, c-Jun and c-Fos, functionally interact with JC virus early regulatory protein large T antigen. J Virol 77, 5241–5252.[CrossRef]
    [Google Scholar]
  38. Krebs, C. J., McAvoy, M. T. & Kumar, G. ( 1995; ). The JC virus minimal core promoter is glial cell specific in vivo. J Virol 69, 2434–2442.
    [Google Scholar]
  39. Kumar, K. U., Pater, A. & Pater, M. M. ( 1993; ). Human JC virus perfect palindromic nuclear factor 1-binding sequences important for glial cell-specific expression in differentiating embryonal carcinoma cells. J Virol 67, 572–576.
    [Google Scholar]
  40. Kumar, K. U., Devireddy, L. R., Tang, S. C., Pater, A. & Pater, M. M. ( 1996; ). Human JC virus nuclear factor 1 binding motifs and large tumor antigen region required for transactivation of late promoter. J Neurochem 67, 473–481.
    [Google Scholar]
  41. Laux, G., Dugrillon, F., Eckert, C., Adam, B., Zimber-Strobl, U. & Bornkamm, G. W. ( 1994; ). Identification and characterization of an Epstein–Barr virus nuclear antigen 2-responsive cis element in the bidirectional promoter region of latent membrane protein and terminal protein 2 genes. J Virol 68, 6947–6958.
    [Google Scholar]
  42. Lindberg, R. L., Achtnichts, L., Hoffmann, F., Kuhle, J. & Kappos, L. ( 2008; ). Natalizumab alters transcriptional expression profiles of blood cell subpopulations of multiple sclerosis patients. J Neuroimmunol 194, 153–164.[CrossRef]
    [Google Scholar]
  43. Lynch, K. J. & Frisque, R. J. ( 1990; ). Identification of critical elements within the JC virus DNA replication origin. J Virol 64, 5812–5822.
    [Google Scholar]
  44. Major, E. O. ( 2009; ). Reemergence of PML in natalizumab-treated patients – new cases, same concerns. N Engl J Med 361, 1041–1043.[CrossRef]
    [Google Scholar]
  45. Major, E. O. ( 2010; ). Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies. Annu Rev Med 61, 35–47.[CrossRef]
    [Google Scholar]
  46. Major, E. O., Vacante, D. A., Traub, R. G., London, W. T. & Sever, J. L. ( 1987; ). Owl monkey astrocytoma cells in culture spontaneously produce infectious JC virus which demonstrates altered biological properties. J Virol 61, 1435–1441.
    [Google Scholar]
  47. Mao, C., Ray-Gallet, D., Tavitian, A. & Moreau-Gachelin, F. ( 1996; ). Differential phosphorylations of Spi-B and Spi-1 transcription factors. Oncogene 12, 863–873.
    [Google Scholar]
  48. Marshall, L. J. & Major, E. O. ( 2010; ). Molecular regulation of JC virus tropism: insights into potential therapeutic targets for progressive multifocal leukoencephalopathy. J Neuroimmune Pharmacol 5, 404–417.[CrossRef]
    [Google Scholar]
  49. Martin, J. D., King, D. M., Slauch, J. M. & Frisque, R. J. ( 1985; ). Differences in regulatory sequences of naturally occurring JC virus variants. J Virol 53, 306–311.
    [Google Scholar]
  50. Marzocchetti, A., Wuthrich, C., Tan, C. S., Tompkins, T., Bernal-Cano, F., Bhargava, P., Ropper, A. H. & Koralnik, I. J. ( 2008; ). Rearrangement of the JC virus regulatory region sequence in the bone marrow of a patient with rheumatoid arthritis and progressive multifocal leukoencephalopathy. J Neurovirol 14, 455–458.[CrossRef]
    [Google Scholar]
  51. Matsuda, M., Jona, M., Yasui, K. & Nagashima, K. ( 1987; ). Genetic characterization of JC virus Tokyo-1 strain, a variant oncogenic in rodents. Virus Res 7, 159–168.[CrossRef]
    [Google Scholar]
  52. Messam, C. A., Hou, J. & Major, E. O. ( 2000; ). Coexpression of nestin in neural and glial cells in the developing human CNS defined by a human-specific anti-nestin antibody. Exp Neurol 161, 585–596.[CrossRef]
    [Google Scholar]
  53. Messam, C. A., Hou, J., Gronostajski, R. M. & Major, E. O. ( 2003; ). Lineage pathway of human brain progenitor cells identified by JC virus susceptibility. Ann Neurol 53, 636–646.[CrossRef]
    [Google Scholar]
  54. Monaco, M. C., Sabath, B. F., Durham, L. C. & Major, E. O. ( 2001; ). JC virus multiplication in human hematopoietic progenitor cells requires the NF-1 class D transcription factor. J Virol 75, 9687–9695.[CrossRef]
    [Google Scholar]
  55. Ondek, B., Shepard, A. & Herr, W. ( 1987; ). Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities. EMBO J 6, 1017–1025.
    [Google Scholar]
  56. Petterson, M. & Schaffner, W. ( 1987; ). A purine-rich DNA sequence motif present in SV40 and lymphotropic papovavirus binds a lymphoid-specific factor and contributes to enhancer activity in lymphoid cells. Genes Dev 1, 962–972.[CrossRef]
    [Google Scholar]
  57. Pugh, B. F. & Tjian, R. ( 1991; ). Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev 5, 1935–1945.[CrossRef]
    [Google Scholar]
  58. Rao, S., Garrett-Sinha, L. A., Yoon, J. & Simon, M. C. ( 1999a; ). The Ets factors PU.1 and Spi-B regulate the transcription in vivo of P2Y10, a lymphoid restricted heptahelical receptor. J Biol Chem 274, 34245–34252.[CrossRef]
    [Google Scholar]
  59. Rao, S., Matsumura, A., Yoon, J. & Simon, M. C. ( 1999b; ). SPI-B activates transcription via a unique proline, serine, and threonine domain and exhibits DNA binding affinity differences from PU.1. J Biol Chem 274, 11115–11124.[CrossRef]
    [Google Scholar]
  60. Ravichandran, V. & Major, E. O. ( 2008; ). DNA-binding transcription factor NF-1A negatively regulates JC virus multiplication. J Gen Virol 89, 1396–1401.[CrossRef]
    [Google Scholar]
  61. Ray, D., Bosselut, R., Ghysdael, J., Mattei, M. G., Tavitian, A. & Moreau-Gachelin, F. ( 1992; ). Characterization of Spi-B, a transcription factor related to the putative oncoprotein Spi-1/PU.1. Mol Cell Biol 12, 4297–4304.
    [Google Scholar]
  62. Rekvig, O. ( 1997; ). Polyoma induced autoimmunity to DNA; experimental systems and clinical observations in human SLE. Lupus 6, 325–326.[CrossRef]
    [Google Scholar]
  63. Sabath, B. F. & Major, E. O. ( 2002; ). Traffic of JC virus from sites of initial infection to the brain: the path to progressive multifocal leukoencephalopathy. J Infect Dis 186, S180–S186.[CrossRef]
    [Google Scholar]
  64. Schirm, S., Jiricny, J. & Schaffner, W. ( 1987; ). The SV40 enhancer can be dissected into multiple segments, each with a different cell type specificity. Genes Dev 1, 65–74.[CrossRef]
    [Google Scholar]
  65. Schmidlin, H., Diehl, S. A., Nagasawa, M., Scheeren, F. A., Schotte, R., Uittenbogaart, C. H., Spits, H. & Blom, B. ( 2008; ). Spi-B inhibits human plasma cell differentiation by repressing BLIMP1 and XBP-1 expression. Blood 112, 1804–1812.[CrossRef]
    [Google Scholar]
  66. Schweitzer, B. L. & DeKoter, R. P. ( 2004; ). Analysis of gene expression and Ig transcription in PU.1/Spi-B-deficient progenitor B cell lines. J Immunol 172, 144–154.[CrossRef]
    [Google Scholar]
  67. Shivakumar, C. V. & Das, G. C. ( 1994; ). Biochemical and mutational analysis of the polyomavirus core promoter: involvement of nuclear factor-1 in early promoter function. J Gen Virol 75, 1281–1290.[CrossRef]
    [Google Scholar]
  68. Su, G. H., Ip, H. S., Cobb, B. S., Lu, M. M., Chen, H. M. & Simon, M. C. ( 1996; ). The Ets protein Spi-B is expressed exclusively in B cells and T cells during development. J Exp Med 184, 203–214.[CrossRef]
    [Google Scholar]
  69. Su, G. H., Chen, H. M., Muthusamy, N., Garrett-Sinha, L. A., Baunoch, D., Tenen, D. G. & Simon, M. C. ( 1997; ). Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B. EMBO J 16, 7118–7129.[CrossRef]
    [Google Scholar]
  70. Sumner, C., Shinohara, T., Durham, L., Traub, R., Major, E. O. & Amemiya, K. ( 1996; ). Expression of multiple classes of the nuclear factor-1 family in the developing human brain: differential expression of two classes of NF-1 genes. J Neurovirol 2, 87–100.[CrossRef]
    [Google Scholar]
  71. Sunden, Y., Semba, S., Suzuki, T., Okada, Y., Orba, Y., Nagashima, K., Umemura, T. & Sawa, H. ( 2007; ). DDX1 promotes proliferation of the JC virus through transactivation of its promoter. Microbiol Immunol 51, 339–347.[CrossRef]
    [Google Scholar]
  72. Tamura, T., Inoue, T., Nagata, K. & Mikoshiba, K. ( 1988; ). Enhancer of human polyoma JC virus contains nuclear factor I-binding sequences; analysis using mouse brain nuclear extracts. Biochem Biophys Res Commun 157, 419–425.[CrossRef]
    [Google Scholar]
  73. Tan, C. S., Dezube, B. J., Bhargava, P., Autissier, P., Wuthrich, C., Miller, J. & Koralnik, I. J. ( 2009; ). Detection of JC virus DNA and proteins in the bone marrow of HIV-positive and HIV-negative patients: implications for viral latency and neurotropic transformation. J Infect Dis 199, 881–888.[CrossRef]
    [Google Scholar]
  74. Vacante, D. A., Traub, R. & Major, E. O. ( 1989; ). Extension of JC virus host range to monkey cells by insertion of a simian virus 40 enhancer into the JC virus regulatory region. Virology 170, 353–361.[CrossRef]
    [Google Scholar]
  75. Vaz, B., Cinque, P., Pickhardt, M. & Weber, T. ( 2000; ). Analysis of the transcriptional control region in progressive multifocal leukoencephalopathy. J Neurovirol 6, 398–409.[CrossRef]
    [Google Scholar]
  76. Wasylyk, B., Hahn, S. L. & Giovane, A. ( 1993; ). The Ets family of transcription factors. Eur J Biochem 211, 7–18.[CrossRef]
    [Google Scholar]
  77. Wegner, M., Drolet, D. W. & Rosenfeld, M. G. ( 1993; ). Regulation of JC virus by the POU-domain transcription factor Tst-1: implications for progressive multifocal leukoencephalopathy. Proc Natl Acad Sci U S A 90, 4743–4747.[CrossRef]
    [Google Scholar]
  78. Weintraub, S. J., Chow, K. N., Luo, R. X., Zhang, S. H., He, S. & Dean, D. C. ( 1995; ). Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375, 812–815.[CrossRef]
    [Google Scholar]
  79. Yamamoto, H., Kihara-Negishi, F., Yamada, T., Suzuki, M., Nakano, T. & Oikawa, T. ( 2002; ). Interaction between the hematopoietic Ets transcription factor Spi-B and the coactivator CREB-binding protein associated with negative cross-talk with c-Myb. Cell Growth Differ 13, 69–75.
    [Google Scholar]
  80. Yogo, Y., Kitamura, T., Sugimoto, C., Ueki, T., Aso, Y., Hara, K. & Taguchi, F. ( 1990; ). Isolation of a possible archetypal JC virus DNA sequence from nonimmunocompromised individuals. J Virol 64, 3139–3143.
    [Google Scholar]
  81. Zhai, W., Tuan, J. A. & Comai, L. ( 1997; ). SV40 large T antigen binds to the TBP-TAF(I) complex SL1 and coactivates ribosomal RNA transcription. Genes Dev 11, 1605–1617.[CrossRef]
    [Google Scholar]
  82. Zhao, B. & Sample, C. E. ( 2000; ). Epstein–Barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein–Barr virus nuclear antigen 2 through sequences encompassing an spi-1/Spi-B binding site. J Virol 74, 5151–5160.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.023184-0
Loading
/content/journal/jgv/10.1099/vir.0.023184-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error