1887

Abstract

There is growing evidence that porcine reproductive and respiratory syndrome virus (PRRSV) has developed mechanisms to subvert the host innate immune response. PRRSV non-structural protein 2 (Nsp2) was suggested previously as a potential interferon (IFN) antagonist. This study focused on Nsp2 to investigate its inhibitory mechanism of IFN induction. It was demonstrated that Nsp2 strongly inhibited IFN- production by antagonizing activation of the IFN regulatory factor 3 (IRF-3) pathway induced by the Sendai virus (SeV). Further studies revealed that the cysteine protease domain (PL2) of Nsp2 was necessary for IFN antagonism. Additionally, both full-length Nsp2 and the PL2 protease domain of Nsp2 were found to inhibit SeV-induced phosphorylation and nuclear translocation of IRF-3. These findings suggest that Nsp2 is likely to play an important role in subversion of IRF-3-dependent innate antiviral defences, providing a basis for elucidating the mechanisms underlying PRRSV pathogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.025205-0
2010-12-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/12/2947.html?itemId=/content/journal/jgv/10.1099/vir.0.025205-0&mimeType=html&fmt=ahah

References

  1. Albina, E., Carrat, C. & Charley, B. ( 1998; ). Interferon-α response to swine arterivirus (PoAV), the porcine reproductive and respiratory syndrome virus. J Interferon Cytokine Res 18, 485–490.[CrossRef]
    [Google Scholar]
  2. Barretto, N., Jukneliene, D., Ratia, K., Chen, Z., Mesecar, A. D. & Baker, S. C. ( 2005; ). The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol 79, 15189–15198.[CrossRef]
    [Google Scholar]
  3. Basler, C. F., Mikulasova, A., Martinez-Sobrido, L., Paragas, J., Mühlberger, E., Bray, M., Klenk, H. D., Palese, P. & García-Sastre, A. ( 2003; ). The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J Virol 77, 7945–7956.[CrossRef]
    [Google Scholar]
  4. Bauhofer, O., Summerfield, A., Sakoda, Y., Tratschin, J. D., Hofmann, M. A. & Ruggli, N. ( 2007; ). Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81, 3087–3096.[CrossRef]
    [Google Scholar]
  5. Beura, L. K., Sarkar, S. N., Kwon, B., Subramaniam, S., Jones, C., Pattnaik, A. K. & Osorio, F. A. ( 2010; ). Porcine reproductive and respiratory syndrome virus nonstructural protein 1β modulates host innate immune response by antagonizing IRF3 activation. J Virol 84, 1574–1584.[CrossRef]
    [Google Scholar]
  6. Bhoj, V. G. & Chen, Z. J. ( 2009; ). Ubiquitylation in innate and adaptive immunity. Nature 458, 430–437.[CrossRef]
    [Google Scholar]
  7. Biron, C. A. ( 2001; ). Interferons α and β as immune regulators – a new look. Immunity 14, 661–664.[CrossRef]
    [Google Scholar]
  8. Blakqori, G., Delhaye, S., Habjan, M., Blair, C. D., Sánchez-Vargas, I., Olson, K. E., Attarzadeh-Yazdi, G., Fragkoudis, R., Kohl, A. & other authors ( 2007; ). La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts. J Virol 81, 4991–4999.[CrossRef]
    [Google Scholar]
  9. Bonjardim, C. A. ( 2005; ). Interferons (IFNs) are key cytokines in both innate and adaptive antiviral immune responses – and viruses counteract IFN action. Microbes Infect 7, 569–578.[CrossRef]
    [Google Scholar]
  10. Boxer, E. L., Nanda, S. K. & Baron, M. D. ( 2009; ). The rinderpest virus non-structural C protein blocks the induction of type 1 interferon. Virology 385, 134–142.[CrossRef]
    [Google Scholar]
  11. Buddaert, W., Van Reeth, K. & Pensaert, M. ( 1998; ). In vivo and in vitro interferon (IFN) studies with the porcine reproductive and respiratory syndrome virus (PRRSV). Adv Exp Med Biol 440, 461–467.
    [Google Scholar]
  12. Chang, T. H., Liao, C. L. & Lin, Y. L. ( 2006; ). Flavivirus induces interferon-β gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-κB activation. Microbes Infect 8, 157–171.[CrossRef]
    [Google Scholar]
  13. Chen, Z., Lawson, S., Sun, Z., Zhou, X., Guan, X., Christopher-Hennings, J., Nelson, E. A. & Fang, Y. ( 2010a; ). Identification of two auto-cleavage products of nonstructural protein 1 (nsp1) in porcine reproductive and respiratory syndrome virus infected cells: nsp1 function as interferon antagonist. Virology 398, 87–97.[CrossRef]
    [Google Scholar]
  14. Chen, Z., Zhou, X., Lunney, J. K., Lawson, S., Sun, Z., Brown, E., Christopher-Hennings, J., Knudsen, D., Nelson, E. & Fang, Y. ( 2010b; ). Immunodominant epitopes in nsp2 of porcine reproductive and respiratory syndrome virus are dispensable for replication, but play an important role in modulation of the host immune response. J Gen Virol 91, 1047–1057.[CrossRef]
    [Google Scholar]
  15. Clementz, M. A., Chen, Z., Banach, B. S., Wang, Y., Sun, L., Ratia, K., Baez-Santos, Y. M., Wang, J., Takayama, J. & other authors ( 2010; ). Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J Virol 84, 4619–4629.[CrossRef]
    [Google Scholar]
  16. den Boon, J. A., Faaberg, K. S., Meulenberg, J. J., Wassenaar, A. L., Plagemann, P. G., Gorbalenya, A. E. & Snijder, E. J. ( 1995; ). Processing and evolution of the N-terminal region of the arterivirus replicase ORF1a protein: identification of two papainlike cysteine proteases. J Virol 69, 4500–4505.
    [Google Scholar]
  17. Devaraj, S. G., Wang, N., Chen, Z., Chen, Z., Tseng, M., Barretto, N., Lin, R., Peters, C. J., Tseng, C. T. & other authors ( 2007; ). Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem 282, 32208–32221.[CrossRef]
    [Google Scholar]
  18. Ehrhardt, C., Kardinal, C., Wurzer, W. J., Wolff, T., von Eichel-Streiber, C., Pleschka, S., Planz, O. & Ludwig, S. ( 2004; ). Rac1 and PAK1 are upstream of IKK-ϵ and TBK-1 in the viral activation of interferon regulatory factor-3. FEBS Lett 567, 230–238.[CrossRef]
    [Google Scholar]
  19. Fitzgerald, K. A., McWhirter, S. M., Faia, K. L., Rowe, D. C., Latz, E., Golenbock, D. T., Coyle, A. J., Liao, S. M. & Maniatis, T. ( 2003; ). IKKϵ and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4, 491–496.
    [Google Scholar]
  20. Frias-Staheli, N., Giannakopoulos, N. V., Kikkert, M., Taylor, S. L., Bridgen, A., Paragas, J., Richt, J. A., Rowland, R. R., Schmaljohn, C. S. & other authors ( 2007; ). Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2, 404–416.[CrossRef]
    [Google Scholar]
  21. Frieman, M., Ratia, K., Johnston, R. E., Mesecar, A. D. & Baric, R. S. ( 2009; ). Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-κB signaling. J Virol 83, 6689–6705.[CrossRef]
    [Google Scholar]
  22. Gack, M. U., Shin, Y. C., Joo, C. H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z. & other authors ( 2007; ). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920.[CrossRef]
    [Google Scholar]
  23. García-Sastre, A. ( 2001; ). Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279, 375–384.[CrossRef]
    [Google Scholar]
  24. Graff, J. W., Ewen, J., Ettayebi, K. & Hardy, M. E. ( 2007; ). Zinc-binding domain of rotavirus NSP1 is required for proteasome-dependent degradation of IRF3 and autoregulatory NSP1 stability. J Gen Virol 88, 613–620.[CrossRef]
    [Google Scholar]
  25. Han, J., Wang, Y. & Faaberg, K. S. ( 2006; ). Complete genome analysis of RFLP 184 isolates of porcine reproductive and respiratory syndrome virus. Virus Res 122, 175–182.[CrossRef]
    [Google Scholar]
  26. Han, J., Liu, G., Wang, Y. & Faaberg, K. S. ( 2007; ). Identification of nonessential regions of the nsp2 replicase protein of porcine reproductive and respiratory syndrome virus strain VR-2332 for replication in cell culture. J Virol 81, 9878–9890.[CrossRef]
    [Google Scholar]
  27. Han, J., Rutherford, M. S. & Faaberg, K. S. ( 2009; ). The porcine reproductive and respiratory syndrome virus nsp2 cysteine protease domain possesses both trans- and cis-cleavage activities. J Virol 83, 9449–9463.[CrossRef]
    [Google Scholar]
  28. Jaworska, J., Gravel, A., Fink, K., Grandvaux, N. & Flamand, L. ( 2007; ). Inhibition of transcription of the beta interferon gene by the human herpesvirus 6 immediate-early 1 protein. J Virol 81, 5737–5748.[CrossRef]
    [Google Scholar]
  29. Jennings, S., Martínez-Sobrido, L., García-Sastre, A., Weber, F. & Kochs, G. ( 2005; ). Thogoto virus ML protein suppresses IRF3 function. Virology 331, 63–72.[CrossRef]
    [Google Scholar]
  30. Kawai, T. & Akira, S. ( 2006a; ). Innate immune recognition of viral infection. Nat Immunol 7, 131–137.
    [Google Scholar]
  31. Kawai, T. & Akira, S. ( 2006b; ). TLR signaling. Cell Death Differ 13, 816–825.[CrossRef]
    [Google Scholar]
  32. Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K. J., Takeuchi, O. & Akira, S. ( 2005; ). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6, 981–988.[CrossRef]
    [Google Scholar]
  33. Kim, O., Sun, Y., Lai, F. W., Song, C. & Yoo, D. ( 2010; ). Modulation of type I interferon induction by porcine reproductive and respiratory syndrome virus and degradation of CREB-binding protein by non-structural protein 1 in MARC-145 and HeLa cells. Virology 402, 315–326.[CrossRef]
    [Google Scholar]
  34. Kochs, G., García-Sastre, A. & Martínez-Sobrido, L. ( 2007; ). Multiple anti-interferon actions of the influenza A virus NS1 protein. J Virol 81, 7011–7021.[CrossRef]
    [Google Scholar]
  35. Kopecky-Bromberg, S. A., Martínez-Sobrido, L., Frieman, M., Baric, R. A. & Palese, P. ( 2007; ). Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81, 548–557.[CrossRef]
    [Google Scholar]
  36. Lee, S. M. & Kleiboeker, S. B. ( 2005; ). Porcine arterivirus activates the NF-κB pathway through κB degradation. Virology 342, 47–59.[CrossRef]
    [Google Scholar]
  37. Lee, S. M., Schommer, S. K. & Kleiboeker, S. B. ( 2004; ). Porcine reproductive and respiratory syndrome virus field isolates differ in in vitro interferon phenotypes. Vet Immunol Immunopathol 102, 217–231.[CrossRef]
    [Google Scholar]
  38. Lee, C., Calvert, J. G., Welch, S. K. & Yoo, D. ( 2005; ). A DNA-launched reverse genetics system for porcine reproductive and respiratory syndrome virus reveals that homodimerization of the nucleocapsid protein is essential for virus infectivity. Virology 331, 47–62.[CrossRef]
    [Google Scholar]
  39. Lindner, H. A., Lytvyn, V., Qi, H., Lachance, P., Ziomek, E. & Menard, R. ( 2007; ). Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys 466, 8–14.[CrossRef]
    [Google Scholar]
  40. Luo, R., Xiao, S., Jiang, Y., Jin, H., Wang, D., Liu, M., Chen, H. & Fang, L. ( 2008; ). Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses interferon-β production by interfering with the RIG-I signaling pathway. Mol Immunol 45, 2839–2846.[CrossRef]
    [Google Scholar]
  41. Meulenberg, J. J. ( 2000; ). PRRSV, the virus. Vet Res 31, 11–21.
    [Google Scholar]
  42. Miller, L. C., Laegreid, W. W., Bono, J. L., Chitko-McKown, C. G. & Fox, J. M. ( 2004; ). Interferon type I response in porcine reproductive and respiratory syndrome virus-infected MARC-145 cells. Arch Virol 149, 2453–2463.[CrossRef]
    [Google Scholar]
  43. Narayanan, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C. T. & Makino, S. ( 2008; ). Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 82, 4471–4479.[CrossRef]
    [Google Scholar]
  44. Overend, C., Mitchell, R., He, D., Rompato, G., Grubman, M. J. & Garmendia, A. E. ( 2007; ). Recombinant swine beta interferon protects swine alveolar macrophages and MARC-145 cells from infection with Porcine reproductive and respiratory syndrome virus. J Gen Virol 88, 925–931.[CrossRef]
    [Google Scholar]
  45. Randall, R. E. & Goodbourn, S. ( 2008; ). Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89, 1–47.[CrossRef]
    [Google Scholar]
  46. Rowland, R. R., Robinson, B., Stefanick, J., Kim, T. S., Guanghua, L., Lawson, S. R. & Benfield, D. A. ( 2001; ). Inhibition of porcine reproductive and respiratory syndrome virus by interferon-γ and recovery of virus replication with 2-aminopurine. Arch Virol 146, 539–555.[CrossRef]
    [Google Scholar]
  47. Saitoh, T., Tun-Kyi, A., Ryo, A., Yamamoto, M., Finn, G., Fujita, T., Akira, S., Yamamoto, N., Lu, K. P. & Yamaoka, S. ( 2006; ). Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat Immunol 7, 598–605.[CrossRef]
    [Google Scholar]
  48. Servant, M. J., Grandvaux, N., tenOever, B. R., Duguay, D., Lin, R. & Hiscott, J. ( 2003; ). Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA. J Biol Chem 278, 9441–9447.[CrossRef]
    [Google Scholar]
  49. Sharma, S., tenOever, B. R., Grandvaux, N., Zhou, G. P., Lin, R. & Hiscott, J. ( 2003; ). Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151.[CrossRef]
    [Google Scholar]
  50. Snijder, E. J., Wassenaar, A. L., Spaan, W. J. & Gorbalenya, A. E. ( 1995; ). The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases. J Biol Chem 270, 16671–16676.[CrossRef]
    [Google Scholar]
  51. Sun, Z., Chen, Z., Lawson, S. R. & Fang, Y. ( 2010; ). The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions. J Virol 84, 7832–7846.[CrossRef]
    [Google Scholar]
  52. Thanawongnuwech, R., Young, T. F., Thacker, B. J. & Thacker, E. L. ( 2001; ). Differential production of proinflammatory cytokines: in vitro PRRSV and Mycoplasma hyopneumoniae co-infection model. Vet Immunol Immunopathol 79, 115–127.[CrossRef]
    [Google Scholar]
  53. Tian, K., Yu, X., Zhao, T., Feng, Y., Cao, Z., Wang, C., Hu, Y., Chen, X., Hu, D. & other authors ( 2007; ). Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS ONE 2, e526.[CrossRef]
    [Google Scholar]
  54. van Aken, D., Zevenhoven-Dobbe, J., Gorbalenya, A. E. & Snijder, E. J. ( 2006; ). Proteolytic maturation of replicase polyprotein pp1a by the nsp4 main proteinase is essential for equine arteritis virus replication and includes internal cleavage of nsp7. J Gen Virol 87, 3473–3482.[CrossRef]
    [Google Scholar]
  55. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M. & other authors ( 2003; ). Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640–643.[CrossRef]
    [Google Scholar]
  56. Yoneyama, M., Suhara, W., Fukuhara, Y., Sato, M., Ozato, K. & Fujita, T. ( 1996; ). Autocrine amplification of type I interferon gene expression mediated by interferon stimulated gene factor 3 (ISGF3). J Biochem 120, 160–169.[CrossRef]
    [Google Scholar]
  57. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S. & Fujita, T. ( 2004; ). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5, 730–737.[CrossRef]
    [Google Scholar]
  58. Zheng, D., Chen, G., Guo, B., Cheng, G. & Tang, H. ( 2008; ). PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production. Cell Res 18, 1105–1113.
    [Google Scholar]
  59. Zhou, L., Zhang, J., Zeng, J., Yin, S., Li, Y., Zheng, L., Guo, X., Ge, X. & Yang, H. ( 2009; ). The 30-amino-acid deletion in the Nsp2 of highly pathogenic porcine reproductive and respiratory syndrome virus emerging in China is not related to its virulence. J Virol 83, 5156–5167.[CrossRef]
    [Google Scholar]
  60. Ziebuhr, J., Snijder, E. J. & Gorbalenya, A. E. ( 2000; ). Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81, 853–879.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.025205-0
Loading
/content/journal/jgv/10.1099/vir.0.025205-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error