- Volume 90, Issue 10, 2009
Volume 90, Issue 10, 2009
- Animal
-
- DNA viruses
-
-
Identification of a novel human gammapapillomavirus species
More LessBy using random PCR amplification, shotgun sequencing and sequence similarity searches, we analysed nucleic acids present in cell cultures inoculated with samples from unexplained cases of encephalitis. We identified a divergent human papillomavirus (HPV) sequence originating from a rectal swab. The full genome was amplified by inverse PCR and sequenced. The prototype of the sixth gammapapillomavirus species, HPV116, was not found in the patient's cerebrospinal fluid or respiratory secretions, nor in culture supernatants from other unexplained cases of encephalitis, indicating that its identification in an encephalitis patient was accidental.
-
-
-
Diverse circovirus-like genome architectures revealed by environmental metagenomics
More LessSingle-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes similar to ssDNA circoviruses through data-mining of public viral metagenomes. The metagenomic libraries included samples from reclaimed water and three different marine environments (Chesapeake Bay, British Columbia coastal waters and Sargasso Sea). All the genomes have similarities to the replication (Rep) protein of circoviruses; however, only half have genomic features consistent with known circoviruses. Some of the genomes exhibit a mixture of genomic features associated with different families of ssDNA viruses (i.e. circoviruses, geminiviruses and parvoviruses). Unique genome architectures and phylogenetic analysis of the Rep protein suggest that these viruses belong to novel genera and/or families. Investigating the complex community of ssDNA viruses in the environment can lead to the discovery of divergent species and help elucidate evolutionary links between ssDNA viruses.
-
-
-
Regulator of G protein signalling 16 is a target for a porcine circovirus type 2 protein
More LessInteraction studies have suggested that the non-structural protein encoded by open reading frame 3 (ORF3) of porcine circovirus type 2 (PCV2) binds specifically to a regulator of G protein signalling (RGS) related to human RGS16 (huRGS16). The full-length clone of RGS16 was generated from porcine cells and sequence analysis revealed a close relationship to huRGS16 and murine RGS16. In vitro pull-down experiments verified an interaction between porcine RGS16 (poRGS16) and ORF3 from PCV2. Using GST-linked ORF3 proteins from three different genogroups of PCV2 and from porcine circovirus type 1 (PCV1) in the pull-down experiments indicated that there were differences in their ability to bind poRGS16. Quantitative RT-PCR demonstrated that the expression of poRGS16 mRNA could be induced by a number of cell activators including mitogens (LPS and PHA), interferon inducers (ODN 2216 and poly I : C) and the neurotransmitter norepinephrine. Immunofluorescence labelling confirmed the induced expression of poRGS16 at the protein level and suggested that the PCV2 ORF3 protein co-localized with poRGS16 in LPS-activated porcine PBMC. Furthermore, poRGS16 appeared to participate in the translocation of the ORF3 protein into the cell nucleus, suggesting that the observed interaction may play an important role in the infection biology of porcine circovirus.
-
-
-
Vaccination against porcine parvovirus protects against disease, but does not prevent infection and virus shedding after challenge infection with a heterologous virus strain
More LessThe demonstration of field isolates of porcine parvovirus (PPV) that differ genetically and antigenically from vaccine strains of PPV raises the question of whether the broadly used inactivated vaccines can still protect sows against the novel viruses. Ten specific-pathogen-free primiparous sows were assigned to three groups and were vaccinated with one of two vaccines based on the old vaccine strains, or served as non-vaccinated controls. After insemination, all sows were challenged with the prototype genotype 2 virus, PPV-27a, on gestation day 41; fetuses were delivered on gestation day 90 and examined for virus infection. The fetuses of the vaccinated sows were protected against disease, but both the vaccinated and the non-vaccinated sows showed a marked increase in antibody titres after challenge infection, indicating replication of the challenge virus. All sows (vaccinated and non-vaccinated) shed the challenge virus for at least 10 days after infection, with no difference in the pattern or duration of virus shedding.
-
-
-
Deletions and recombinations in the core region of hepatitis B virus genotype E strains from asymptomatic blood donors in Guinea, west Africa
More LessThe prevalence of hepatitis B virus (HBV) surface antigen (HBsAg) chronic carriage in west Africa is the highest in the world, but its molecular epidemiology remains relatively poorly investigated. Plasma samples from random asymptomatic carriers of HBsAg in Conakry, Guinea, were studied and the complete genome sequences of 81 strains were obtained. Three additional samples from Kumasi, Ghana, were also included in the analysis. Phylogenetic analyses confirmed the dominance of genotype E (95.1 %), including 8.6 % of strains (viral load, 5×103–2.6×108 IU ml−1) comprising dominant variants with large deletions in the core region and minority wild-type variants. The presence of two different patterns of deletions in two and four donors suggested targeted genome fragility between nt 1979 and 2314. The remaining sequences included one subgenotype A3 (1 %) and six A/E recombinant forms (4–7 %). A/E strains with identical points of recombination in three donors suggested strongly that these recombinant HBV strains are circulating and transmitted in the population. Recombination points were concentrated in the core gene. The detection of similar A/E recombinant strains in Ghana suggested a geographical extension of recombinant HBV to the region. The quasispecies of one additional Ghanaian strain sequenced in the pre-surface/surface region resolved into dominant clones of either the A or E genotype, but also three different patterns of A/E recombinant variants. The observation that both deletions of genotype E strains and A/E recombination points are mostly located in the core gene at specific positions indicates a region of the genome where genetic rearrangements preferentially take place.
-
- Plant
-
-
-
Molecular characterization of the plant virus genus Ourmiavirus and evidence of inter-kingdom reassortment of viral genome segments as its possible route of origin
Ourmia melon virus (OuMV), Epirus cherry virus (EpCV) and Cassava virus C (CsVC) are three species placed in the genus Ourmiavirus. We cloned and sequenced their RNA genomes. The sizes of the three genomic RNAs of OuMV, the type member of the genus, were 2814, 1064 and 974 nt and each had one open reading frame. RNA1 potentially encoded a 97.5 kDa protein carrying the GDD motif typical of RNA-dependent RNA polymerases (RdRps). The putative RdRps of ourmiaviruses are distantly related to known viral RdRps, with the closest similarity and phylogenetic affinity observed with fungal viruses of the genus Narnaviridae. RNA2 encoded a 31.6 kDa protein which, expressed in bacteria as a His-tag fusion protein and in plants through agroinfiltration, reacted specifically with antibodies made against tubular structures found in the cytoplasm. The ORF2 product is significantly similar to movement proteins of the genus Tombusviridae, and phylogenetic analysis supported this evolutionary relationship. The product of OuMV ORF3 is a 23.8 kDa protein. This protein was also expressed in bacteria and plants, and reacted specifically with antisera against the OuMV coat protein. The sequence of the ORF3 protein showed limited but significant similarity to capsid proteins of several plant and animal viruses, although phylogenetic analysis failed to reveal its most likely origin. Taken together, these results indicate that ourmiaviruses comprise a unique group of plant viruses that might have evolved by reassortment of genomic segments of RNA viruses infecting hosts belonging to different eukaryotic kingdoms, in particular, fungi and plants.
-
-
-
-
Rapid screening of RNA silencing suppressors by using a recombinant virus derived from beet necrotic yellow vein virus
More LessTo counteract plant defence mechanisms, plant viruses have evolved to encode RNA silencing suppressor (RSS) proteins. These proteins can be identified by a range of silencing suppressor assays. Here, we describe a simple method using beet necrotic yellow vein virus (BNYVV) that allows a rapid screening of RSS activity. The viral inoculum consisted of BNYVV RNA1, which encodes proteins involved in viral replication, and two BNYVV-derived replicons: rep3–P30, which expresses the movement protein P30 of tobacco mosaic virus, and rep5–X, which allows the expression of a putative RSS (X). This approach has been validated through the use of several known RSSs. Two potential candidates have been tested and we show that, in our system, the P13 protein of burdock mottle virus displays RSS activity while the P0 protein of cereal yellow dwarf virus-RPV does not.
-
-
-
A novel plant virus with unique properties infecting Japanese holly fern
More LessA novel RNA virus with a bipartite genome has been found associated with an emerging disease affecting Japanese holly fern (Cyrtomium falcatum). Diseased Japanese holly fern plants showed a variety of foliar symptoms and reduction in size. The virus was transmitted by grafting, as well as through spores from an infected plant. Partially purified preparations of the virus from infected ferns contained quasi-spherical particles that ranged from 30 to 40 nm in diameter. Double-stranded RNA (dsRNA) analyses from diseased plants yielded two major molecules of approximately 6.2 and 3.0 kbp in size, together with three other dsRNAs ascertained to be the replicative forms of subgenomic RNAs. The organization of RNA1 of this novel virus resembles that of raspberry bushy dwarf virus (genus Idaeovirus), whereas the genomic RNA2 showed a distinct organization and evolutionary origin. Results of this study indicate that the virus detected in diseased ferns is an undescribed phytovirus, for which the name Japanese holly fern mottle virus (JHFMoV) is proposed. Furthermore, we postulate that JHFMoV has enough distinguishing features to represent the type species of a novel genus of plant viruses. Taking into account the original host of the virus, we propose the name Pteridovirus for this taxon.
-
-
-
Novel begomovirus species of recombinant nature in sweet potato (Ipomoea batatas) and Ipomoea indica: taxonomic and phylogenetic implications
More LessViral diseases occur wherever sweet potato (Ipomoea batatas) is cultivated and because this crop is vegetatively propagated, accumulation and perpetuation of viruses can become a major constraint for production. Up to 90 % reductions in yield have been reported in association with viral infections. About 20 officially accepted or tentative virus species have been found in sweet potato and other Ipomoea species. They include three species of begomoviruses (genus Begomovirus, family Geminiviridae) whose genomes have been fully sequenced. In this investigation, we conducted a search for begomoviruses infecting sweet potato and Ipomoea indica in Spain and characterized the complete genome of 15 isolates. In addition to sweet potato leaf curl virus (SPLCV) and Ipomoea yellowing vein virus, we identified three new begomovirus species and a novel strain of SPLCV. Our analysis also demonstrated that extensive recombination events have shaped the populations of Ipomoea-infecting begomoviruses in Spain. The increased complexity of the unique Ipomoea-infecting begomovirus group, highlighted by our results, open new horizons to understand the phylogeny and evolution of the family Geminiviridae.
-
- Other Agents
-
-
-
PrPTSE in muscle-associated lymphatic tissue during the preclinical stage of mice infected orally with bovine spongiform encephalopathy
The involvement of muscles in the pathogenesis of transmissible spongiform encephalopathies (TSEs) is irregular and unpredictable. We show that the TSE-specific protein (PrPTSE) is present in muscles of mice fed with a mouse-adapted strain of bovine spongiform encephalopathy as early as 100 days post-infection, corresponding to about one-third of the incubation period. The proportion of mice with PrPTSE-positive muscles and the number of muscles involved increased as infection progressed, but never attained more than a limited distribution, even at the clinical stage of disease. The appearance of PrPTSE in muscles during the preclinical stage of disease was probably due to the haematogenous/lymphatic spread of infectivity from the gastrointestinal tract to lymphatic tissues associated with muscles, whereas in symptomatic animals, the presence of PrPTSE in the nervous system, in neuromuscular junctions and in muscle fibres suggests a centrifugal spread from the central nervous system, as already observed in other TSE models.
-
-
-
-
Protective effect of the T112 PrP variant in sheep challenged with bovine spongiform encephalopathy
Sheep with an ARQ/ARQ PRNP genotype at codon positions 136/154/171 are highly susceptible to experimental infection with bovine spongiform encephalopathy (BSE). However, a number of sheep challenged orally or intracerebrally with BSE were clinically asymptomatic and found to survive or were diagnosed as BSE-negative when culled. Sequencing of the full PRNP gene open reading frame of BSE-susceptible and -resistant sheep indicated that, in the majority of Suffolk sheep, resistance was associated with an M112T PRNP variant (TARQ allele). A high proportion (47 of 49; 96 %) of BSE-challenged wild-type (MARQ/MARQ) Suffolk sheep were BSE-infected, whereas none of the 20 sheep with at least one TARQ allele succumbed to BSE. Thirteen TARQ-carrying sheep challenged with BSE are still alive and some have survival periods equivalent to, or greater than, reported incubation periods of BSE in ARR/ARR and VRQ/VRQ sheep.
-
-
-
Genetic analysis of the SPRN gene in ruminants reveals polymorphisms in the alanine-rich segment of shadoo protein
More LessPrion diseases in ruminants, especially sheep scrapie, cannot be fully explained by PRNP genetics, suggesting the influence of a second modulator gene. The SPRN gene is a good candidate for this role. The SPRN gene encodes the shadoo protein (Sho) which has homology to the PRNP gene encoding prion protein (PrP). Murine Sho has a similar neuroprotective activity to PrP and SPRN gene variants are associated with human prion disease susceptibility. SPRN gene sequences were obtained from 14 species in the orders Artiodactyla and Rodentia. We report here the sequences of more than 20 different Sho proteins that have arisen due to single amino acid substitutions and amino acid deletions or insertions. All Sho sequences contained an alanine-rich sequence homologous to a hydrophobic region with amyloidogenic characteristics in PrP. In contrast with PrP, the Sho sequence showed variability in the number of alanine residues.
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)